ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent experiments have demonstrated that the nonlinear elasticity of in vitro networks of the biopolymer actin is dramatically altered in the presence of a flexible cross-linker such as the abundant cytoskeletal protein filamin. The basic principles of such networks remain poorly understood. Here we describe an effective medium theory of flexibly cross-linked stiff polymer networks. We argue that the response of the cross-links can be fully attributed to entropic stiffening, while softening due to domain unfolding can be ignored. The network is modeled as a collection of randomly oriented rods connected by flexible cross-links to an elastic continuum. This effective medium is treated in a linear elastic limit as well as in a more general framework, in which the medium self-consistently represents the nonlinear network behavior. This model predicts that the nonlinear elastic response sets in at strains proportional to cross-linker length and inversely proportional to filament length. Furthermore, we find that the differential modulus scales linearly with the stress in the stiffening regime. These results are in excellent agreement with bulk rheology data.
Motivated by recent experiments showing nonlinear elasticity of in vitro networks of the biopolymer actin cross-linked with filamin, we present an effective medium theory of flexibly cross-linked stiff polymer networks. We model such networks by rand omly oriented elastic rods connected by flexible connectors to a surrounding elastic continuum, which self-consistently represents the behavior of the rest of the network. This model yields a crossover from a linear elastic regime to a highly nonlinear elastic regime that stiffens in a way quantitatively consistent with experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا