ترغب بنشر مسار تعليمي؟ اضغط هنا

The understanding of interstellar nitrogen chemistry has improved significantly with recent results from the Herschel Space Observatory. To set even better constraints, we report here on deep searches for the NH+ ground state rotational transition J= 1.5-0.5 of the ^2Pi_1/2 lower spin ladder, with fine-structure transitions at 1013 and 1019 GHz, and the para-NH2- 1_1,1-0_0,0 rotational transition at 934 GHz towards Sgr B2(M) and G10.6-0.4 using Herschel-HIFI. No clear detections of NH+ are made and the derived upper limits are <2*10^-12 and <7*10^-13 in Sgr B2(M) and G10.6-0.4, respectively. The searches are complicated by the fact that the 1013 GHz transition lies only -2.5 km/s from a CH2NH line, seen in absorption in Sgr B2(M), and that the hyperfine structure components in the 1019 GHz transition are spread over 134 km/s. Searches for the so far undetected NH2- anion turned out to be unfruitful towards G10.6-0.4, while the para-NH2- 1_1,1-0_0,0 transition was tentatively detected towards Sgr B2(M) at a velocity of 19 km/s. Assuming that the absorption occurs at the nominal source velocity of +64 km/s, the rest frequency would be 933.996 GHz, offset by 141 MHz from our estimated value. Using this feature as an upper limit, we found N(p-NH2-)<4*10^11 cm^-2. The upper limits for both species in the diffuse line-of-sight gas are less than 0.1 to 2 % of the values found for NH, NH2, and NH3 towards both sources. Chemical modelling predicts an NH+ abundance a few times lower than our present upper limits in diffuse gas and under typical Sgr B2(M) envelope conditions. The NH2- abundance is predicted to be several orders of magnitudes lower than our observed limits, hence not supporting our tentative detection. Thus, while NH2- may be very difficult to detect in interstellar space, it could, be possible to detect NH+ in regions where the ionisation rates of H2 and N are greatly enhanced.
We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained with Herschel-HIFI towards a small sample of far-infrared bright star forming regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4), and G34.3+0 .1. All sources display an emission line profile associated directly with the HII regions themselves. For the first time we also detect absorption of the [NII] 205 micrometer line by extended low-density foreground material towards W31C and W49N over a wide range of velocities. We attribute this absorption to the warm ionised medium (WIM) and find N(N^+)approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in absorption in the same sight-lines, if approx7-10 % of all C^+ ions exist in the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas phase we find that the mean electron and proton volume densities are ~0.1-0.3 cm^-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM filling fraction are also supported by RADEX modelling of the [NII] 205 micrometer absorption and emission together with visible emission lines attributed mainly to the WIM. The detection of the 205 micrometer line in absorption emphasises the importance of a high spectral resolution, and also offers a new tool for investigation of the WIM.
We have used the Herschel-HIFI instrument to observe interstellar nitrogen hydrides along the sight-lines towards W49N and G10.6-0.4 in order to elucidate the production pathways leading to nitrogen-bearing species in diffuse gas. All detections show absorption by foreground material over a wide range of velocities, as well as absorption associated directly with the hot-core source itself. As in the previously published observations towards G10.6-0.4, the NH, NH2 and NH3 spectra towards W49N show strikingly similar and non-saturated absorption features. We decompose the absorption of the foreground material towards W49N into different velocity components in order to investigate whether the relative abundances vary among the velocity components, and, in addition, we re-analyse the absorption lines towards G10.6-0.4 in the same manner. Abundances, with respect to molecular hydrogen, in each velocity component are estimated using CH. The analysis points to a co-existence of the nitrogen hydrides in diffuse or translucent interstellar gas with a high molecular fraction. Towards both sources, we find that NH is always at least as abundant as both o-NH2 and o-NH3, in sharp contrast to previous results for dark clouds. We find relatively constant N(NH)/N(o-NH3) and N(o-NH2)/N(o-NH3) ratios with mean values of 3.2 and 1.9 towards W49N, and 5.4 and 2.2 towards G10.6-0.4, respectively. The mean abundance of o-NH3 is ~2x10^-9 towards both sources. The nitrogen hydrides also show linear correlations with CN and HNC towards both sources, and looser correlations with CH. The upper limits on the NH+ abundance indicate column densities < 2 - 14 % of N(NH). Surprisingly low values of the ammonia ortho-to-para ratio are found in both sources, ~0.5 - 0.7 +- 0.1. This result cannot be explained by current models as we had expected to find a value of unity or higher.
The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report obse rvations of absorption in NH N=1-0, J=2-1 and ortho-NH2 1_1,1-0_0,0. We also observed ortho-NH3 1_0-0_0, and 2_0-1_0, para-NH3 2_1-1_1, and searched unsuccessfully for NH+. All detections show emission and absorption associated directly with the hot-core source itself as well as absorption by foreground material over a wide range of velocities. All spectra show similar, non-saturated, absorption features, which we attribute to diffuse molecular gas. Total column densities over the velocity range 11-54 km/s are estimated. The similar profiles suggest fairly uniform abundances relative to hydrogen, approximately 6*10^-9, 3*10^-9, and 3*10^-9 for NH, NH2, and NH3, respectively. These abundances are discussed with reference to models of gas-phase and surface chemistry.
Our aim is to observationally investigate the cosmic Dark Ages in order to constrain star and structure formation models, as well as the chemical evolution in the early Universe. Spectral lines from atoms and molecules in primordial perturbations at high redshifts can give information about the conditions in the early universe before and during the formation of the first stars in addition to the epoch of reionisation. The lines may arise from moving primordial perturbations before the formation of the first stars (resonant scattering lines), or could be thermal absorption or emission lines at lower redshifts. The difficulties in these searches are that the source redshift and evolutionary state, as well as molecular species and transition are unknown, which implies that an observed line can fall within a wide range of frequencies. The lines are also expected to be very weak. Observations from space have the advantages of stability and the lack of atmospheric features which is important in such observations. We have therefore, as a first step in our searches, used the Odin satellite to perform two sets of spectral line surveys towards several positions. The first survey covered the band 547-578 GHz towards two positions, and the second one covered the bands 542.0-547.5 GHz and 486.5-492.0 GHz towards six positions selected to test different sizes of the primordial clouds. Two deep searches centred at 543.250 and 543.100 GHz with 1 GHz bandwidth were also performed towards one position. The two lowest rotational transitions of H2 will be redshifted to these frequencies from z~20-30, which is the predicted epoch of the first star formation. No lines are detected at an rms level of 14-90 and 5-35 mK for the two surveys, respectively, and 2-7 mK in the deep searches with a channel spacing of 1-16 MHz. The broad bandwidth covered allows a wide range of redshifts to be explored for a number of atomic and molecular species and transitions. From the theoretical side, our sensitivity analysis show that the largest possible amplitudes of the resonant lines are about 1 mK at frequencies <200 GHz, and a few micro K around 500-600 GHz, assuming optically thick lines and no beam-dilution. However, if existing, thermal absorption lines have the potential to be orders of magnitude stronger than the resonant lines. We make a simple estimation of the sizes and masses of the primordial perturbations at their turn-around epochs, which previously has been identified as the most favourable epoch for a detection. This work may be considered as an important pilot study for our forthcoming observations with the Herschel Space Observatory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا