ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [CII] 157.7micron fine structure line and thermal dust continuum emission from a pair of gas-rich galaxies at z=4.7, BR1202-0725. This system consists of a luminous qu asar host galaxy and a bright submm galaxy (SMG), while a fainter star-forming galaxy is also spatially coincident within a 4 (25 kpc) region. All three galaxies are detected in the submm continuum, indicating FIR luminosities in excess of 10^13 Lsun for the two most luminous objects. The SMG and the quasar host galaxy are both detected in [CII] line emission with luminosities, L([CII]) = (10.0 +/- 1.5)x10^9 Lsun and L([CII]) = (6.5+/-1.0)x10^9 Lsun, respectively. We estimate a luminosity ratio, L([CII])/L(FIR) = (8.3+/-1.2)x10^-4 for the starburst SMG to the North, and L([CII])/L(FIR) = (2.5+/-0.4)x10^-4 for the quasar host galaxy, in agreement with previous high-redshift studies that suggest lower [CII]-to-FIR luminosity ratios in quasars than in starburst galaxies. The third fainter object with a flux density, S(340GHz) = 1.9+/-0.3 mJy, is coincident with a Ly-Alpha emitter and is detected in HST ACS F775W and F814W images but has no clear counterpart in the H-band. Even if this third companion does not lie at a similar redshift to BR1202-0725, the quasar and the SMG represent an overdensity of massive, infrared luminous star-forming galaxies within 1.3 Gyr of the Big Bang.
92 - C.L. Carilli 2010
We present a high resolution (down to 0.18), multi-transition imaging study of the molecular gas in the z = 4.05 submillimeter galaxy GN20. GN20 is one of the most luminous starburst galaxy known at z > 4, and is a member of a rich proto-cluster of g alaxies at z = 4.05 in GOODS-North. We have observed the CO 1-0 and 2-1 emission with the VLA, the CO 6-5 emission with the PdBI Interferometer, and the 5-4 emission with CARMA. The H_2 mass derived from the CO 1-0 emission is 1.3 times 10^{11} (alpha/0.8) Mo. High resolution imaging of CO 2-1 shows emission distributed over a large area, appearing as partial ring, or disk, of ~ 10kpc diameter. The integrated CO excitation is higher than found in the inner disk of the Milky Way, but lower than that seen in high redshift quasar host galaxies and low redshift starburst nuclei. The VLA CO 2-1 image at 0.2 resolution shows resolved, clumpy structure, with a few brighter clumps with intrinsic sizes ~ 2 kpc. The velocity field determined from the CO 6-5 emission is consistent with a rotating disk with a rotation velocity of ~ 570 km s^{-1} (using an inclination angle of 45^o), from which we derive a dynamical mass of 3 times 10^{11} msun within about 4 kpc radius. The star formation distribution, as derived from imaging of the radio synchrotron and dust continuum, is on a similar scale as the molecular gas distribution. The molecular gas and star formation are offset by ~ 1 from the HST I-band emission, implying that the regions of most intense star formation are highly dust-obscured on a scale of ~ 10 kpc. The large spatial extent and ordered rotation of this object suggests that this is not a major merger, but rather a clumpy disk accreting gas rapidly in minor mergers or smoothly from the proto-intracluster medium. ABSTRACT TRUNCATED
70 - M. Pannella 2009
We present first results of a study aimed to constrain the star formation rate and dust content of galaxies at z~2. We use a sample of BzK-selected star-forming galaxies, drawn from the COSMOS survey, to perform a stacking analysis of their 1.4 GHz r adio continuum as a function of different stellar population properties, after removing AGN contaminants from the sample. Dust unbiased star formation rates are derived from radio fluxes assuming the local radio-IR correlation. The main results of this work are: i) specific star formation rates are constant over about 1 dex in stellar mass and up to the highest stellar mass probed; ii) the dust attenuation is a strong function of galaxy stellar mass with more massive galaxies being more obscured than lower mass objects; iii) a single value of the UV extinction applied to all galaxies would lead to grossly underestimate the SFR in massive galaxies; iv) correcting the observed UV luminosities for dust attenuation based on the Calzetti recipe provide results in very good agreement with the radio derived ones; v) the mean specific star formation rate of our sample steadily decreases by a factor of ~4 with decreasing redshift from z=2.3 to 1.4 and a factor of ~40 down the local Universe. These empirical SFRs would cause galaxies to dramatically overgrow in mass if maintained all the way to low redshifts, we suggest that this does not happen because star formation is progressively quenched, likely starting from the most massive galaxies.
62 - C.L. Carilli 2009
When, and how, did the first galaxies and supermassive black holes (SMBH) form, and how did they reionization the Universe? First galaxy formation and cosmic reionization are among the last frontiers in studies of cosmic structure formation. We delin eate the detailed astrophysical probes of early galaxy and SMBH formation afforded by observations at centimeter through submillimeter wavelengths. These observations include studies of the molecular gas (= the fuel for star formation in galaxies), atomic fine structure lines (= the dominant ISM gas coolant), thermal dust continuum emission (= an ideal star formation rate estimator), and radio continuum emission from star formation and relativistic jets. High resolution spectroscopic imaging can be used to study galaxy dynamics and star formation on sub-kpc scales. These cm and mm observations are the necessary compliment to near-IR observations, which probe the stars and ionized gas, and X-ray observations, which reveal the AGN. Together, a suite of revolutionary observatories planned for the next decade from centimeter to X-ray wavelengths will provide the requisite panchromatic view of the complex processes involved in the formation of the first generation of galaxies and SMBHs, and cosmic reionization.
We report the detection of CO molecular line emission in the z=4.5 millimeter-detected galaxy COSMOS_J100054+023436 (hereafter: J100+0234) using the IRAM Plateau de Bure interferometer (PdBI) and NRAOs Very Large Array (VLA). The CO(4-3) line as obse rved with PdBI has a full line width of ~1000 km/s, an integrated line flux of 0.66 Jy km/s, and a CO luminosity of 3.2e10 L_sun. Comparison to the 3.3sigma detection of the CO(2-1) line emission with the VLA suggests that the molecular gas is likely thermalized to the J=4-3 transition level. The corresponding molecular gas mass is 2.6e10 M_sun assuming an ULIRG-like conversion factor. From the spatial offset of the red- and blue-shifted line peaks and the line width a dynamical mass of 1.1e11 M_sun is estimated assuming a merging scenario. The molecular gas distribution coincides with the rest-frame optical and radio position of the object while being offset by 0.5 from the previously detected Ly$alpha$ emission. J1000+0234 exhibits very typical properties for lower redshift (z~2) sub-millimeter galaxies (SMGs) and thus is very likely one of the long sought after high redshift (z>4) objects of this population. The large CO(4-3) line width taken together with its highly disturbed rest-frame UV geometry suggest an ongoing major merger about a billion years after the Big Bang. Given its large star formation rate (SFR) of >1000 M_sun/yr and molecular gas content this object could be the precursor of a red-and-dead elliptical observed at a redshift of z=2.
89 - C.L. Carilli 2008
We present an analysis of the radio properties of large samples of Lyman Break Galaxies (LBGs) at $z sim 3$, 4, and 5 from the COSMOS field. The median stacking analysis yields a statistical detection of the $z sim 3$ LBGs (U-band drop-outs), with a 1.4 GHz flux density of $0.90 pm 0.21 mu$Jy. The stacked emission is unresolved, with a size $< 1$, or a physical size $< 8$kpc. The total star formation rate implied by this radio luminosity is $31pm 7$ $M_odot$ year$^{-1}$, based on the radio-FIR correlation in low redshift star forming galaxies. The star formation rate derived from a similar analysis of the UV luminosities is 17 $M_odot$ year$^{-1}$, without any correction for UV dust attenuation. The simplest conclusion is that the dust attenuation factor is 1.8 at UV wavelengths. However, this factor is considerably smaller than the standard attenuation factor $sim 5$, normally assumed for LBGs. We discuss potential reasons for this discrepancy, including the possibility that the dust attenuation factor at $z ge 3$ is smaller than at lower redshifts. Conversely, the radio luminosity for a given star formation rate may be systematically lower at very high redshift. Two possible causes for a suppressed radio luminosity are: (i) increased inverse Compton cooling of the relativistic electron population due to scattering off the increasing CMB at high redshift, or (ii) cosmic ray diffusion from systematically smaller galaxies. The radio detections of individual sources are consistent with a radio-loud AGN fraction of 0.3%. One source is identified as a very dusty, extreme starburst galaxy (a submm galaxy).
31 - C.L. Carilli 2008
I update the SKA key science program (KSP) on first light and cosmic reionization. The KSP has two themes: (i) Using the 21cm line of neutral hydrogen as the most direct probe into the evolution of the neutral intergalactic medium during cosmic reion ization. Such HI 21cm studies are potentially the most important new window on cosmology since the discovery of the CMB. (ii) Observing the gas, dust, star formation, and dynamics, of the first galaxies and AGN. Observations at cm and mm wavelengths, provide an unobscured view of galaxy formation within 1 Gyr of the Big Bang, and are an ideal complement to the study of stars, ionized gas, and AGN done using near-IR telescopes. I summarize HI 21cm signals, challenges, and telescopes under construction. I also discuss the prospects for studying the pre-galactic medium, prior to first light, using a low frequency telescope on the Moon. I then review the current status of mm and cm observations of the most known distant galaxies (z > 6). I make the simple argument that even a 10% SKA-high demonstrator will have a profound impact on the study of the first galaxies. In particular, extending the SKA to the natural atmospheric limit (set by the O_2 line) of 45 GHz, increases the effective sensitivity to thermal emission by another factor four.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا