ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the X-ray and optical properties of the massive galaxy cluster MACSJ1206.2-0847 (z=0.4385), discovered in the Massive Cluster Survey (MACS). Our Chandra observation of the system yields a total X-ray luminosity of 2.4 x 10^45 erg/s (0.1-2. 4 keV) and a global gas temperature of (11.6 +/- 0.7) keV, very high values typical of MACS clusters. In both optical and X-ray images MACSJ1206 appears close to relaxed in projection, with a pronounced X-ray peak at the location of the brightest cluster galaxy (BCG); we interpret this feature as the remnant of a cold core. A spectacular giant gravitational arc, 15 in length, bright (V~21) and unusually red (R-K=4.3), is seen 20 west of the BCG; we measure a redshift of z=1.036 for the lensed galaxy. From our HST image of the cluster we identify the giant arc and its counter image as a seven-fold imaged system. An excess of X-ray emission in the direction of the arc coincides with a mild galaxy overdensity and could be the remnant of a minor merger with a group of galaxies. We derive estimates of the total cluster mass as well as of the mass of the cluster core using X-ray, dynamical, and gravitational-lensing techniques. For the mass enclosed by the giant arc (r<119 kpc) our strong-lensing analysis based on HST imaging yields a very high value of 1.1 x 10^14 M_sun, inconsistent with the much lower X-ray estimate of 0.5 x 10^14 M_sun. Similarly, the virial estimate of 4 x 10^15 M_sun for the total cluster mass, derived from multi-object spectroscopy of 38 cluster members, is significantly higher than the corresponding X-ray estimate of 1.7 x 10^15 M_sun. We take the discrepant mass estimates to be indicative of substructure along the line of sight during an ongoing merger event, an interpretation that is supported by the systems very high velocity dispersion of 1580 km/s.
We present maps of the cosmic large-scale structure around the twelve most distant galaxy clusters from the Massive Cluster Survey (MACS) as traced by the projected surface density of galaxies on the cluster red sequence. Taken with the Suprime-Cam w ide-field camera on the Subaru telescope, the images used in this study cover a 27x27 arcmin^2 area around each cluster, corresponding to 10 x 10 Mpc^2 at the median redshift of z = 0.55 of our sample. We directly detect satellite clusters and filaments extending over the full size of our imaging data in the majority of the clusters studied, supporting the picture of mass accretion via infall along filaments suggested by numerical simulations of the growth of clusters and the evolution of large-scale structure. A comparison of the galaxy distribution near the cluster cores with the X-ray surface brightness as observed with Chandra reveals, in several cases, significant offsets between the gas and galaxy distribution, indicative of ongoing merger events. The respective systems are ideally suited for studies of the dynamical properties of gas, galaxies, and dark matter. In addition, the large-scale filaments viewed at high contrast in these MACS clusters are prime targets for the direct detection and study of the warm-hot intergalactic medium (WHIM).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا