ترغب بنشر مسار تعليمي؟ اضغط هنا

The numerical analysis of strongly interacting nanostructures requires powerful techniques. Recently developed methods, such as the time-dependent density matrix renormalization group (tDMRG) approach or the embedded-cluster approximation (ECA), rely on the numerical solution of clusters of finite size. For the interpretation of numerical results, it is therefore crucial to understand finite-size effects in detail. In this work, we present a careful finite-size analysis for the examples of one quantum dot, as well as three serially connected quantum dots. Depending on odd-even effects, physically quite different results may emerge from clusters that do not differ much in their size. We provide a solution to a recent controversy over results obtained with ECA for three quantum dots. In particular, using the optimum clusters discussed in this paper, the parameter range in which ECA can reliably be applied is increased, as we show for the case of three quantum dots. As a practical procedure, we propose that a comparison of results for static quantities against those of quasi-exact methods, such as the ground-state density matrix renormalization group (DMRG) method or exact diagonalization, serves to identify the optimum cluster type. In the examples studied here, we find that to observe signatures of the Kondo effect in finite systems, the best clusters involving dots and leads must have a total z-component of the spin equal to zero.
This work proposes a new approach to study transport properties of highly correlated local structures. The method, dubbed the Logarithmic Discretization Embedded Cluster Approximation (LDECA), consists of diagonalizing a finite cluster containing the many-body terms of the Hamiltonian and embedding it into the rest of the system, combined with Wilsons idea of a logarithmic discretization of the representation of the Hamiltonian. The physics associated with both one embedded dot and a double-dot side-coupled to leads is discussed in detail. In the former case, the results perfectly agree with Bethe ansatz data, while in the latter, the physics obtained is framed in the conceptual background of a two-stage Kondo problem. A many-body formalism provides a solid theoretical foundation to the method. We argue that LDECA is well suited to study complicated problems such as transport through molecules or quantum dot structures with complex ground states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا