ترغب بنشر مسار تعليمي؟ اضغط هنا

155 - P.-H. Chu , E. Weisman , C.-Y. Liu 2015
We describe a proposed experimental search for exotic spin-coupled interactions using a solid-state paramagnetic insulator. The experiment is sensitive to the net magnetization induced by the exotic interaction between the unpaired insulator electron s with a dense, non-magnetic mass in close proximity. An existing experiment has been used to set limits on the electric dipole moment of the electron by probing the magnetization induced in a cryogenic gadolinium gallium garnet sample on application of a strong electric field. With suitable additions, including a movable source mass, this experiment can be used to explore monopole-dipole forces on polarized electrons with unique or unprecedented sensitivity. The solid-state, non-magnetic construction, combined with the low-noise conditions and extremely sensitive magnetometry available at cryogenic temperatures could lead to a sensitivity over ten orders of magnitude greater than exiting limits in the range below 1 mm.
The dynamical structure factor of solid $^{15}$N$_{2}$ in the $alpha$ phase ($T<35$K) is measured at the IN4 time-of-flight spectrometer at the Institut Laue Langevin, and the potential performance of this substance as a UCN converter is assessed. Th e cross-section to down-scatter neutrons to ultra-cold neutron energies is determined as a function of incident energy, as well as the up-scattering mean free path. The UCN production cross-section is found to be approximately 20% of that of deuterium. However, UCN with energy 181 neV have an up-scattering mean free path of 46 cm at $T=5.9$ K, which is $sim20$ times larger than deuterium. Therefore, a large volume $alpha-^{15}$N$_{2}$ source may produce an improved UCN density if sufficient isotopic purity can be achieved.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا