ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the first measurement of the diffusion coefficients of francium and rubidium ions implanted in a yttrium foil. We developed a methodology, based on laser spectroscopy, which can be applied to radioactive and stable species, and allows us to directly take record of the diffusion time. Francium isotopes are produced via fusion-evaporation nuclear reaction of a 100 MeV 18-O beam on a Au target at the Tandem XTU accelerator facility in Legnaro, Italy. Francium is ionized at the gold-vacuum interface and Fr+ ions are then transported with a 3 keV electrostatic beamline to a cell for neutralization and capture in a magneto-optical trap (MOT). A Rb+ beam is also available, which follows the same path as Fr+ ions. The accelerated ions are focused and implanted in a 25 um thick yttrium foil for neutralization: after diffusion to the surface, they are released as neutrals, since the Y work function is lower than the alkali ionization energies. The time evolution of the MOT and the vapor fluorescence signals are used to determine diffusion times of Fr and Rb in Y as a function of temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا