ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the detection of extended warm ionized gas in two powerful high-redshift radio galaxies, NVSS J210626-314003 at z=2.10 and TXS 2353-003 at z=1.49, that does not appear to be associated with the radio jets. This is contrary to what would be expected from the alignment effect, a characteristic feature of distant, powerful radio galaxies at z> 0.6. The gas also has smaller velocity gradients and line widths than most other high-z radio galaxies with similar data. Both galaxies are part of a systematic study of 50 high-redshift radio galaxies with SINFONI, and are the only two that are characterized by the presence of high surface-brightness gas not associated with the jet axis and by the absence of such gas aligned with the jet. Both galaxies are spatially resolved with ISAAC broadband imaging covering the rest-frame R band, and have extended wings that cannot be attributed to line contamination. We argue that the gas and stellar properties of these galaxies are more akin to gas-rich brightest cluster galaxies in cool-core clusters than the general population of high-redshift radio galaxies at z>2. In support of this interpretation, one of our sources, TXS 2353-003, for which we have Halpha narrowband imaging, is associated with an overdensity of candidate Halpha emitters by a factor of 8 relative to the field at z=1.5. We discuss possible scenarios of the evolutionary state of these galaxies and the nature of their emission line gas within the context of cyclical AGN feedback.
We present APEX LABOCA 870 micron observations of the field around the high-redshift radio galaxy MRC1138-262 at z=2.16. We detect 16 submillimeter galaxies in this ~140 square arcmin bolometer map with flux densities in the range 3-11 mJy. The raw n umber counts indicate a density of submillimeter galaxies (SMGs) that is up to four times that of blank field surveys. Based on an exquisite multiwavelength database, including VLA 1.4 GHz radio and infrared observations, we investigate whether these sources are members of the protocluster structure at z=2.2. Using Herschel PACS+SPIRE and Spitzer MIPS photometry, we derive reliable far-infrared photometric redshifts for all sources. Follow-up VLT ISAAC and SINFONI near-infrared spectra confirm that four of these SMGs have redshifts of z=2.2. We also present evidence that another SMG in this field, detected earlier at 850 micron, has a counterpart that exhibits Halpha and CO(1-0) emission at z=2.15. Including the radio galaxy and two SMGs with far-IR photometric redshifts at z=2.2, we conclude that at least eight submm sources are part of the protocluster at z=2.16 associated with the radio galaxy MRC1138-262. We measure a star formation rate density SFRD ~1500 Msun yr^-1 Mpc^-3, four magnitudes higher than the global SFRD of blank fields at this redshift. Strikingly, these eight sources are concentrated within a region of 2 Mpc (the typical size of clusters in the local universe) and are distributed within the filaments traced by the Halpha emitters at z=2.2. This concentration of massive, dusty starbursts is not centered on the submillimeter-bright radio galaxy which could support the infalling of these sources into the cluster center. Approximately half (6/11) of the SMGs that are covered by the Halpha imaging data are associated with Halpha emitters, demonstrating the potential of tracing SMG counterparts with this population (abridged).
Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensd dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope (SPT ). The sources were selected to have S_1.4mm>20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz<6mJy) or far-infrared counterparts (S_100um<1 Jy, S_60um<200mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of 12CO, 13CO, [CI], H2O, and H2O+. We find one or more spectral features in 23 sources yielding a ~90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for ~70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7<z<2.0. The resulting mean redshift of our sample is <z>=3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of <z>=2.3 and for which only 10-15% of the population is expected to be at z>3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.
We present a detailed study of the infrared spectral energy distribution of the high-redshift radio galaxy MRC 1138-26 at z = 2.156, also known as the Spiderweb Galaxy. By combining photometry from Spitzer, Herschel and LABOCA we fit the rest-frame 5 -300 um emission using a two component, starburst and active galactic nucleus (AGN), model. The total infrared (8 - 1000 um) luminosity of this galaxy is (1.97+/-0.28)x10^13 Lsun with (1.17+/-0.27) and (0.79+/-0.09)x10^13 Lsun due to the AGN and starburst components respectively. The high derived AGN accretion rate of sim20% Eddington, and the measured star formation rate (SFR) of 1390pm150 Msun/yr, suggest that this massive system is in a special phase of rapid central black hole and host galaxy growth, likely caused by a gas rich merger in a dense environment. The accretion rate is sufficient to power both the jets and the previously observed large outflow. The high SFR and strong outflow suggest this galaxy could potentially exhaust its fuel for stellar growth in a few tens of Myr, although the likely merger of the radio galaxy with nearby satellites suggest bursts of star formation may recur again on time scales of several hundreds of Myr. The age of the radio lobes implies the jet started after the current burst of star formation, and therefore we are possibly witnessing the transition from a merger-induced starburst phase to a radio-loud AGN phase. We also note tentative evidence for [CII]158um emission. This paper marks the first results from the Herschel Galaxy Evolution Project (Project HeRGE), a systematic study of the evolutionary state of 71 high redshift, 1 < z < 5.2, radio galaxies.
We present an overview on our project to study the extended atmospheres and dust formation zones of Mira stars using coordinated observations with the Very Large Telescope Interferometer (VLTI), the Very Long Baseline Array (VLBA), and the Atacama Pa thfinder Experiment (APEX). The data are interpreted using an approach of combining recent dynamic model atmospheres with a radiative transfer model of the dust shell, and combining the resulting model structure with a maser propagation model.
We study the environments of 6 radio galaxies at 2.2 < z < 2.6 using wide-field near-infrared images. We use colour cuts to identify galaxies in this redshift range, and find that three of the radio galaxies are surrounded by significant surface over densities of such galaxies. The excess galaxies that comprise these overdensities are strongly clustered, suggesting they are physically associated. The colour distribution of the galaxies responsible for the overdensity are consistent with those of galaxies that lie within a narrow redshift range at z ~ 2.4. Thus the excess galaxies are consistent with being companions of the radio galaxies. The overdensities have estimated masses in excess of 10^14 solar masses, and are dense enough to collapse into virizalised structures by the present day: these structures may evolve into groups or clusters of galaxies. A flux-limited sample of protocluster galaxies with K < 20.6 mag is derived by statistically subtracting the fore- and background galaxies. The colour distribution of the protocluster galaxies is bimodal, consisting of a dominant blue sequence, comprising 77 +/- 10% of the galaxies, and a poorly populated red sequence. The blue protocluster galaxies have similar colours to local star-forming irregular galaxies (U -V ~ 0.6), suggesting most protocluster galaxies are still forming stars at the observed epoch. The blue colours and lack of a dominant protocluster red sequence implies that these cluster galaxies form the bulk of their stars at z < 3.
189 - N. Seymour 2008
We present the first mid-infrared Spitzer/Infrared Spectrograph (IRS) observations of powerful radio galaxies at z>2. These radio galaxies, 4C +23.56 (z=2.48) and 6C J1908+7220 (z=3.53), both show strong mid-infrared continua, but with 6C J1908+7220 also showing strong PAH emission at rest-frame 6.2 and 7.7um. In 4C+23.56 we see no obvious PAH features above the continuum. The PAH emission in 6C J1908+7220 is the amongst the most distant observed to date and implies that there is a large instantaneous star formation rate (SFR). This is consistent with the strong detection of 6C J1908+7220 at far-IR and sub-mm wavelengths, indicative of large amounts of cold dust, ~10^9Msun. Powerful radio galaxies at lower redshifts tend to have weak or undetectable PAH features and typically have lower far-IR luminosities. In addition, 4C 23.56 shows moderate silicate absorption as seen in less luminous radio galaxies, indicating tau_{9.7um}=0.3+/-0.05. This feature is shifted out of the observed wavelength range for 6C J1908+7220. The correlation of strong PAH features with large amounts of cold dust, despite the presence of a powerful AGN, is in agreement with other recent results and implies that star formation at high redshift is, in some cases at least, associated with powerful, obscured AGN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا