ترغب بنشر مسار تعليمي؟ اضغط هنا

We performed an observational study of the relation between the interstellar magnetic field alignment and star formation in twenty (20) sky regions containing Bok Globules. The presence of young stellar objects in the globules is verified by a search of infrared sources with spectral energy distribution compatible with a pre main-sequence star. The interstellar magnetic field direction is mapped using optical polarimetry. These maps are used to estimate the dispersion of the interstellar magnetic field direction in each region from a Gaussian fit, sigma_B. In addition to the Gaussian dispersion, we propose a new parameter, eta, to measure the magnetic field alignment that does not rely on any function fitting. Statistical tests show that the dispersion of the magnetic field direction is different in star forming globules relative to quiescent globules. Specifically, the less organised magnetic fields occur in regions having young stellar objects.
We present an analysis of eclipse timings of the post-common envelope binary NSVS 14256825, which is composed of an sdOB star and a dM star in a close orbit (P_{orb} = 0.110374 days). High-speed photometry of this system was performed between July, 2 010 and August, 2012. Ten new mid-eclipse times were analyzed together with all available eclipse times in the literature. We revisited the (O-C) diagram using a linear ephemeris and verified a clear orbital period variation. On the assumption that these orbital period variations are caused by light travel time effects, the (O-C) diagram can be explained by the presence of two circumbinary bodies, even though this explanation requires a longer baseline of observations to be fully tested. The orbital periods of the best solution would be P_c ~ 3.5 years and P_d ~ 6.9 years. The corresponding projected semi-major axes would be a_c i_c ~ 1.9 AU and a_d i_d ~ 2.9 AU. The masses of the external bodies would be M_c ~ 2.9 M_{Jupiter} and M_d ~ 8.1 M_{Jupiter}, if we assume their orbits are coplanar with the close binary. Therefore NSVS 14256825 might be composed of a close binary with two circumbinary planets, though the orbital period variations is still open to other interpretations.
2MASS J09440940-5617117 was identified as a cataclysmic variable in 2007 by its spectrum. In this article we present optical differential photometry in the Rc band obtained using the 0.6-m telescope at Observatorio do Pico dos Dias/Brazil. The comple te light curves confirm the presence of a deep eclipse. We derive an orbital period of 0.1879340(5) d. The eclipse has a width of 0.112 +- 0.003 orbital cycles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا