ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of lig ht element abundances and cosmic microwave background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.
We discuss how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. Thi s yields a larger free-electron fraction. A larger ratio of the sound horizon to the photon diffusion length follows, implying a smaller inferred Neff. This neutrino-mass/recombination effect depends strongly on the neutrino rest masses. Though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving an observational handle of neutrino mass physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا