ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a versatile electric trap for the exploration of a wide range of quantum phenomena in the interaction between polar molecules. The trap combines tunable fields, homogeneous over most of the trap volume, with steep gradient fields at the tr ap boundary. An initial sample of up to 10^8 CH3F molecules is trapped for as long as 60 seconds, with a 1/e storage time of 12 seconds. Adiabatic cooling down to 120 mK is achieved by slowly expanding the trap volume. The trap combines all ingredients for opto-electrical cooling, which, together with the extraordinarily long storage times, brings field-controlled quantum-mechanical collision and reaction experiments within reach.
We present a method which delivers a continuous, high-density beam of slow and internally cold polar molecules. In our source, warm molecules are first cooled by collisions with a cryogenic helium buffer gas. Cold molecules are then extracted by mean s of an electrostatic quadrupole guide. For ND$_3$ the source produces fluxes up to $(7 pm ^{7}_{4}) times 10^{10}$ molecules/s with peak densities up to $(1.0 pm ^{1.0}_{0.6}) times 10^9$ molecules/cm$^3$. For H$_2$CO the population of rovibrational states is monitored by depletion spectroscopy, resulting in single-state populations up to $(82 pm 10)%$.
Electrostatic velocity filtering and guiding is an established technique to produce high fluxes of cold polar molecules. In this paper we clarify different aspects of this technique by comparing experiments to detailed calculations. In the experiment , we produce cold guided beams of the three water isotopologs H2O, D2O and HDO. Their different rotational constants and orientations of electric dipole moments lead to remarkably different Stark shift properties, despite the molecules being very similar in a chemical sense. Therefore, the signals of the guided water isotopologs differ on an absolute scale and also exhibit characteristic electrode voltage dependencies. We find excellent agreement between the relative guided fractions and voltage dependencies of the investigated isotopologs and predictions made by our theoretical model of electrostatic velocity filtering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا