ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge-Higgs unification is the fascinating scenario solving the hierarchy problem without supersymmetry. In this scenario, the Standard Model (SM) Higgs doublet is identified with extra component of the gauge field in higher dimensions and its mass b ecomes finite and stable under quantum corrections due to the higher dimensional gauge symmetry. On the other hand, Yukawa coupling is provided by the gauge coupling, which seems to mean that the flavor mixing and CP violation do not arise at it stands. In this talk, we discuss that the flavor mixing is originated from simultaneously non-diagonalizable bulk and brane mass matrices. Then, this mechanism is applied to various flavor changing neutral current (FCNC) processes via Kaluza-Klein (KK) gauge boson exchange at tree level and constraints for compactification scale are obtained.
We study compactified pure gauge/gravitational theories with gauge-fixing terms and show that these theories possess quantum mechanical SUSY-like symmetries between unphysical degrees of freedom. These residual symmetries are global symmetries and ge nerated by quantum mechanical N=2 supercharges. Also, we establish new one-parameter family of gauge choices for higher-dimensional gravity, and calculate as a check of its validity one graviton exchange amplitude in the lowest tree-level approximation. We confirm that the result is indeed $xi$-independent and the cancellation of the $xi$-dependence is ensured by the residual symmetries. We also give a simple interpretation of the vDVZ-discontinuity, which arises in the lowest tree-level approximation, from the supersymmetric point of view.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا