ترغب بنشر مسار تعليمي؟ اضغط هنا

We present ground-based and Swift photometric and spectroscopic observations of the candidate tidal disruption event (TDE) ASASSN-14li, found at the center of PGC 043234 ($dsimeq90$ Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The s ource had a peak bolometric luminosity of $Lsimeq10^{44}$ ergs s$^{-1}$ and a total integrated energy of $Esimeq7times10^{50}$ ergs radiated over the $sim6$ months of observations presented. The UV/optical emission of the source is well-fit by a blackbody with roughly constant temperature of $Tsim35,000$ K, while the luminosity declines by roughly a factor of 16 over this time. The optical/UV luminosity decline is broadly consistent with an exponential decline, $Lpropto e^{-t/t_0}$, with $t_0simeq60$ days. ASASSN-14li also exhibits soft X-ray emission comparable in luminosity to the optical and UV emission but declining at a slower rate, and the X-ray emission now dominates. Spectra of the source show broad Balmer and helium lines in emission as well as strong blue continuum emission at all epochs. We use the discoveries of ASASSN-14li and ASASSN-14ae to estimate the TDE rate implied by ASAS-SN, finding an average rate of $r simeq 4.1 times 10^{-5}~{rm yr}^{-1}$ per galaxy with a 90% confidence interval of $(2.2 - 17.0) times 10^{-5}~{rm yr}^{-1}$ per galaxy. ASAS-SN found roughly 1 TDE for every 70 Type Ia supernovae in 2014, a rate that is much higher than that of other surveys.
We present Spitzer IRAC $3.6-8$um and MIPS $24$um point-source catalogs for seven galaxies: NGC$6822$, M$33$, NGC$300$, NGC$2403$, M$81$, NGC$0247$, and NGC$7793$. The catalogs contain a total of $sim300,000$ sources and were created by dual-band sel ection of sources with $>3sigma$ detections at both $3.6$um and $4.5$um. The source lists become significantly incomplete near $m_{3.6}=m_{4.5}simeq18$. We complement the $3.6$um and $4.5$um fluxes with $5.8$um, $8.0$um and $24$um fluxes or $3sigma$ upper limits using a combination of PSF and aperture photometry. This catalog is a resource as an archive for studying mid-infrared transients and for planning observations with the James Webb Space Telescope.
193 - M. M. Fausnaugh 2014
We identify and phase a sample of 81 Cepheids in the maser-host galaxy NGC 4258 using the Large Binocular Telescope (LBT), and obtain calibrated mean magnitudes in up to 4 filters for a subset of 43 Cepheids using archival HST data. We employ 3 model s to study the systematic effects of extinction, the assumed extinction law, and metallicity on the Cepheid distance to NGC 4258. We find a correction to the Cepheid colors consistent with a grayer extinction law in NGC 4258 compared to the Milky Way ($R_V =4.9$), although we believe this is indicative of other systematic effects. If we combine our Cepheid sample with previously known Cepheids, we find a significant metallicity adjustment to the distance modulus of $gamma_1 = -0.61 pm 0.21$ mag/dex, for the Zaritsky et al. (1994) metallicity scale, as well as a weak trend of Cepheid colors with metallicity. Conclusions about the absolute effect of metallicity on Cepheid mean magnitudes appear to be limited by the available data on the metallicity gradient in NGC 4258, but our Cepheid data require at least some metallicity adjustment to make the Cepheid distance consistent with independent distances to the LMC and NGC 4258. From our ensemble of models and the geometric maser distance of NGC 4258 ($mu_{N4258} = 29.40 pm 0.06$ mag), we estimate $mu_{LMC} = 18.57 pm 0.14$ mag ($51.82 pm 3.23$ kpc).
We model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (~100%), that the nex t Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (~92%) already exists in the 2MASS survey. Most ccSNe (~98%) will be easily observed in the optical, but a significant fraction (~43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3 deg), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (~64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia SN. Based on our modeled observability, we find a Galactic ccSN rate of 3.2 (+7.3/-2.6) per century and a Galactic Type Ia SN rate of 1.4 (+1.4/-0.8) per century for a total Galactic SN rate of 4.6 (+7.4/-2.7) per century is needed to account for the SNe observed over the last millennium.
76 - D. M. Szczygiel 2012
We observed SN2002bu in the near-IR with the Hubble Space Telescope, the mid-IR with the Spitzer Space Telescope and in X-rays with Swift 10 years after the explosion. If the faint L_Hsim100 Lsun HST near-IR source at the transient position is the ne ar-IR counterpart of SN2002bu, then the source has dramatically faded between 2004 and 2012, from Lsim10^6.0 Lsun to Lsim10^4.5 Lsun. It is still heavily obscured, tau_Vsim5 in graphitic dust models, with almost all the energy radiated in the mid-IR. The radius of the dust emission is increasing as Rsimt^(0.7+/-0.4) and the optical depth is dropping as tau_Vsimt^(-1.3+/-0.4). The evolution expected for an expanding shell of material, tau_Vsim1/t^2, is ruled out at approximately 2 sigma while the tau_Vsimt^(-0.8) to t^(-1) optical depth scaling for a shock passing through a pre-existing wind is consistent with the data. If the near-IR source is a chance superposition, the present day source can be moderately more luminous, significantly more obscured and evolving more slowly. While we failed to detect X-ray emission, the X-ray flux limits are consistent with the present day emissions being powered by an expanding shock wave. SN2002bu is clearly a member of the SN2008S class of transients, but continued monitoring of the evolution of the spectral energy distribution is needed to conclusively determine the nature of the transient.
We present results from monitoring observations of the gravitationally lensed quasar RX J1131-1231 performed with the Chandra X-ray Observatory. The X-ray observations were planned with relatively long exposures that allowed a search for energy-depen dent microlensing in the soft (0.2-2 keV) and hard (2-10 keV) light curves of the images of RX J1131-1231. We detect significant microlensing in the X-ray light-curves of images A and D, and energy-dependent microlensing of image D. The magnification of the soft band appears to be larger than that in the hard band by a factor of ~ 1.3 when image D becomes more magnified. This can be explained by the difference between a compact, softer-spectrum corona that is producing a more extended, harder spectrum reflection component off the disk. This is supported by the evolution of the fluorescent iron line in image D over three consecutive time-averaged phases of the light curve. In the first period, a Fe line at E = 6.36(-0.16,+0.13) keV is detected (at > 99% confidence). In the second period, two Fe lines are detected, one at E = 5.47(-0.08,+0.06) keV (detected at > 99% confidence) and another at E = 6.02(-0.07,+0.09) keV (marginally detected at > 90% confidence), and in the third period, a broadened Fe line at 6.42(-0.15,+0.19) keV is detected (at > 99% confidence). This evolution of the Fe line profile during the microlensing event is consistent with the line distortion expected when a caustic passes over the inner disk where the shape of the fluorescent Fe line is distorted by General Relativistic and Doppler effects.
58 - Ying Zu 2012
The damped random walk (DRW) model is increasingly used to model the variability in quasar optical light curves, but it is still uncertain whether the DRW model provides an adequate description of quasar optical variability across all time scales. Us ing a sample of OGLE quasar light curves, we consider four modifications to the DRW model by introducing additional parameters into the covariance function to search for deviations from the DRW model on both short and long time scales. We find good agreement with the DRW model on time scales that are well sampled by the data (from a month to a few years), possibly with some intrinsic scatter in the additional parameters, but this conclusion depends on the statistical test employed and is sensitive to whether the estimates of the photometric errors are correct to within ~10%. On very short time scales (below a few months), we see some evidence of the existence of a cutoff below which the correlation is stronger than the DRW model, echoing the recent finding of Mushotzky et al. (2011) using quasar light curves from Kepler. On very long time scales (> a few years), the light curves do not constrain models well, but are consistent with the DRW model.
(ABRIDGED) The canonical picture of a supernova impostor is a -11 < M_V < -14 optical transient from a massive (M > 40Msun) star during which the star ejects a dense shell of material. Dust formed in the ejecta then obscures the star. In this picture , the geometric expansion of the shell leads to clear predictions for the evolution of the optical depths and hence the evolution of the optical through mid-IR emissions. Here we review the theory of this standard model and then examine the impostors SN1954J, SN1997bs, SN1999bw, SN2000ch, SN2001ac, SN2002bu, SN2002kg and SN2003gm, as well as the potential archetype eta Carinae. SN1999bw, SN2000ch, SN2001ac, SN2002bu and SN2003gm all show mid-IR emission indicative of dust, and the luminosities of SN1999bw, SN2001ac, SN2002bu and SN2003gm are dominated by dust emission. The properties of these sources are broadly inconsistent with the predictions of the canonical model. There are probably two classes of sources. In one class (eta Carinae, SN1954J, SN1997bs, and (maybe) SN2003gm), the optical transient is a signal that the star is entering a phase with very high mass loss rates that must last far longer than the visual transient. The second class (SN1999bw, SN2001ac, SN2002bu and (maybe) SN2003gm) has the different physics of SN2008S and the 2008 NGC300 transient, where they are obscured by dust re-forming in a pre-existing wind after it was destroyed by an explosive transient. There are no cases where the source at late times is significantly fainter than the progenitor star. All these dusty transients are occurring in relatively low mass (M < 25Msun) stars rather than high mass (M > 40Msun) stars radiating near the Eddington limit like eta Carinae. The durations and energetics of these transients cannot be properly characterized without near/mid-IR observations.
We quadruple the number of quasars known behind the Large Magellanic Cloud (LMC) from 55 (42 in the LMC fields of the third phase of the Optical Gravitational Lensing Experiment (OGLE)) to 200 by spectroscopically confirming 169 (144 new) quasars fro m a sample of 845 observed candidates in four ~3 deg^2 Anglo-Australian Telescope/AAOmega fields south of the LMC center. The candidates were selected based on their Spitzer mid-infrared colors, X-ray emission, and/or optical variability properties in the database of the OGLE microlensing survey. The contaminating sources can be divided into 115 young stellar objects (YSOs), 17 planetary nebulae (PNe), 39 Be and 24 blue stars, 68 red stars, and 12 objects classed as either YSO/PN or blue star/YSO. There are also 402 targets with either featureless spectra or too low signal-to-noise ratio for source classification. Our quasar sample is 50% (30%) complete at I = 18.6 mag (19.3 mag). The newly discovered active galactic nuclei (AGNs) provide many additional reference points for proper motion studies of the LMC, and the sample includes 10 bright AGNs (I < 18 mag) potentially suitable for absorption line studies. Their primary use, however, is for detailed studies of quasar variability, as they all have long-term, high cadence, continuously growing light curves from the microlensing surveys of the LMC. Completing the existing Magellanic Quasars Survey fields in the LMC and Small Magellanic Cloud should yield a sample of ~700 well-monitored AGNs, and expanding it to the larger regions covered by the OGLE-IV survey should yield a sample of ~3600 AGNs.
We report the discovery of a six-month-long mid-infrared transient, SDWFS-MT-1 (aka SN 2007va), in the Spitzer Deep, Wide-Field Survey of the NOAO Deep Wide-Field Survey Bootes field. The transient, located in a z=0.19 low luminosity (M_[4.5]~-18.6 m ag, L/L_MilkyWay~0.01) metal-poor (12+log(O/H)~7.8) irregular galaxy, peaked at a mid-infrared absolute magnitude of M_[4.5]~-24.2 in the 4.5 micron Spitzer/IRAC band and emitted a total energy of at least 10^51 ergs. The optical emission was likely fainter than the mid-infrared, although our constraints on the optical emission are poor because the transient peaked when the source was behind the Sun. The Spitzer data are consistent with emission by a modified black body with a temperature of ~1350 K. We rule out a number of scenarios for the origin of the transient such as a Galactic star, AGN activity, GRB, tidal disruption of a star by a black hole and gravitational lensing. The most plausible scenario is a supernova exploding inside a massive, optically thick circumstellar medium, composed of multiple shells of previously ejected material. If the proposed scenario is correct, then a significant fraction (~10%) of the most luminous supernova may be self-enshrouded by dust not only before but also after the supernova occurs. The spectral energy distribution of the progenitor of such a supernova would be a slightly cooler version of eta Carina, peaking at 20-30 microns.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا