ترغب بنشر مسار تعليمي؟ اضغط هنا

This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {pi} states and the gap between {pi} and {pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.
Choosing the three phenomenological models of the dynamical cosmological term $Lambda$, viz., $Lambda sim (dot a/a)^2$, $Lambda sim {ddot a/a}$ and $Lambda sim rho$ where $a$ is the cosmic scale factor, it has been shown by the method of numerical an alysis that the three models are equivalent for the flat Universe $k=0$. The evolution plots for dynamical cosmological term $Lambda$ vs. time $t$ and also the cosmic scale factor $a$ vs. $t$ are drawn here for $k=0, +1$. A qualitative analysis has been made from the plots which supports the idea of inflation and hence expanding Universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا