ترغب بنشر مسار تعليمي؟ اضغط هنا

In this letter, we report on the single crystal growth and physical characterization of the distorted kagom{e} system Pr$_3$Ga$_5$SiO$_{14}$. It is found that at zero magnetic field the system shows no magnetic order down to 0.035 K and exhibits a $T ^{2}$ behavior for the specific heat at low temperatures, indicative of a gapless 2D spin liquid state. Application of an applied field induces nanoscale islands of ordered spins, with a concomitant reduction of the $T^{2}$ specific heat term. This state could be a possible ferro-spin nematic ordering stabilized out of an unusual spin liquid state.
One of the primary goals of modern condensed matter physics is to elucidate the nature of the ground state in various electronic systems. Many correlated electron materials, such as high temperature superconductors, geometrically frustrated oxides, a nd low-dimensional magnets are still the objects of fruitful study because of the unique properties which arise due to poorly understood many-body effects. Heavy fermion metals - materials which have high effective electron masses due to these effects - represent a class of materials with exotic properties, such as unusual magnetism, unconventional superconductivity, and hidden order parameters. The heavy fermion superconductor URu2Si2 has held the attention of physicists for the last two decades due to the presence of a hidden order phase below 17.5 K. Neutron scattering measurements indicate that the ordered moment is 0.03 $mu_{B}$, much too small to account for the large heat capacity anomaly at 17.5 K. We present recent neutron scattering experiments which unveil a new piece of this puzzle - the spin excitation spectrum above 17.5 K exhibits well-correlated, itinerant-like spin excitations up to at least 10 meV emanating from incommensurate wavevectors. The gapping of these excitations corresponds to a large entropy release and explains the reduction in the electronic specific heat through the transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا