ترغب بنشر مسار تعليمي؟ اضغط هنا

We have been able to compare with astrometric precision AstroDrizzle processed images of NGC 6720 (the Ring Nebula) made using two cameras on the Hubble Space Telescope. The time difference of the observations was 12.925 yrs. This large time-base all owed determination of tangential velocities of features within this classic planetary nebula. Individual features were measured in [N II] images as were the dark knots seen in silhouette against background nebular [O III] emission. An image magnification and matching technique was also used to test the accuracy of the usual assumption of homologous expansion. We found that homologous expansion does apply, but the rate of expansion is greater along the major axis of the nebula, which is intrinsically larger than the minor axis. We find that the dark knots expand more slowly that the nebular gas, that the distance to the nebula is 720 pc +/-30%, and the dynamic age of the Ring Nebula is about 4000 yrs. The dynamic age is in agreement with the position of the central star on theoretical curves for stars collapsing from the peak of the Asymptotic Giant Branch to being white dwarfs.
87 - G. J. Ferland 2012
The optical [N I] doublet near 5200 {AA} is anomalously strong in a variety of emission-line objects. We compute a detailed photoionization model and use it to show that pumping by far-ultraviolet (FUV) stellar radiation previously posited as a gener al explanation applies to the Orion Nebula (M42) and its companion M43; but, it is unlikely to explain planetary nebulae and supernova remnants. Our models establish that the observed nearly constant equivalent width of [N I] with respect to the dust-scattered stellar continuum depends primarily on three factors: the FUV to visual-band flux ratio of the stellar population; the optical properties of the dust; and the line broadening where the pumping occurs. In contrast, the intensity ratio [N I]/H{beta} depends primarily on the FUV to extreme-ultraviolet ratio, which varies strongly with the spectral type of the exciting star. This is consistent with the observed difference of a factor of five between M42 and M43, which are excited by an O7 and B0.5 star respectively. We derive a non-thermal broadening of order 5 km/s for the [N I] pumping zone and show that the broadening mechanism must be different from the large-scale turbulent motions that have been suggested to explain the line-widths in this H II region. A mechanism is required that operates at scales of a few astronomical units, which may be driven by thermal instabilities of neutral gas in the range 1000 to 3000 K. In an appendix, we describe how collisional and radiative processes are treated in the detailed model N I atom now included in the Cloudy plasma code.
We present Spitzer Space Telescope observations of 11 regions SE of the Bright Bar in the Orion Nebula, along a radial from the exciting star theta1OriC, extending from 2.6 to 12.1. Our Cycle 5 programme obtained deep spectra with matching IRS short- high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin. Orion is the benchmark for studies of the ISM particularly for elemental abundances. Spitzer observations provide a unique perspective on the Ne and S abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.01+/-0.08)E-4. We obtained corresponding new ground-based spectra at CTIO. These optical data are used to estimate the electron temperature, electron density, optical extinction, and the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase S abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7-6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S = 13.0+/-0.6. We derive the electron density versus distance from theta1OriC for [S III] and [S II]. Both distributions are for the most part decreasing with increasing distance. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ~12 from theta1OriC. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region.
The three dimensional structure of the brightest part of the Orion Nebula is assessed in the light of published and new data. We find that the widely accepted model of a concave blister of ionized material needs to be altered in the southwest directi on from the Trapezium, where we find that the Orion-S feature is a separate cloud of very optically thick molecules within the body of ionized gas, which is probably the location of the multiple embedded sources that produce the outflows that define the Orion-S star formation region. Evidence for this cloud comes from the presence of H2CO lines in absorption in the radio continuum and discrepancies in the extinction derived from radio-optical and optical only emission. We present an equilibrium Cloudy model of the Orion-S cloud, which successfully reproduces many observed properties of this feature. We also report the discovery of an open-sided shell of [O III] surrounding the Trapezium stars, revealed through emission line ratio images and the onset of radiation shadows beyond some proplyds. We show that the observed properties of the shell are consistent with it being a stationary structure, produced by shock interactions between the ambient nebular gas and the high-velocity wind from theta^1 Ori C. We examine the implications of the recently published evidence for a large blueshifted velocity of theta^1 Ori C with respect to the Orion Molecular Cloud, which could mean that this star has only recently begun to photoionize the Orion Nebula. We show that current observations of the Nebula do not rule out such a possibility, so long as the ionization front has propagated into a pre-existing low-density region. In addition, a young age for the Nebula would help explain the presence of nearby proplyds with a short mass-loss timescale to photoablation.
We have used widely spaced in time Hubble Space Telescope images to determine tangential velocities of features associated with outflows from young stars. These observations were supplemented by groundbased telescope spectroscopy and from the resulta nt radial velocities, space velocities were determined for many outflows. Numerous new moving features were found and grouped into known and newly assigned Herbig Haro objects. It was found that stellar outflow is highly discontinuous, as frequently is the case, with long-term gaps of a few hundred years and that these outflow periods are marked by staccato bursts over periods of about ten years. Although this has been observed in other regions, the Orion Nebula Cluster presents the richest display of this property. Most of the large scale Herbig Haro objects in the brightest part of the Orion Nebula appear to originate from a small region northeast of the strong Orion-S radio and infrared sources. With the possible exception of HH 203, we are not able to identify specific stellar sources, but do identify candidate sources for several other bright Herbig Haro objects. We find that there are optical features in the BN-KL region that can be related to the known large scale outflow that originates there. We find additional evidence for this outflow originating 500 to 1000 years ago.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا