ترغب بنشر مسار تعليمي؟ اضغط هنا

There is a rapidly increasing interest in crowdsourcing for data labeling. By crowdsourcing, a large number of labels can be often quickly gathered at low cost. However, the labels provided by the crowdsourcing workers are usually not of high quality . In this paper, we propose a minimax conditional entropy principle to infer ground truth from noisy crowdsourced labels. Under this principle, we derive a unique probabilistic labeling model jointly parameterized by worker ability and item difficulty. We also propose an objective measurement principle, and show that our method is the only method which satisfies this objective measurement principle. We validate our method through a variety of real crowdsourcing datasets with binary, multiclass or ordinal labels.
190 - Q.-H. Wang , C. Platt , Y. Yang 2013
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr$_2$RuO$_4$ is the first prime candidate for topological chiral p-wave superconductivity, wh ich has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid $^3$He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wavevectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular we show the small wavevector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.
142 - L. A. Wray , R. Thomale , C. Platt 2012
We present a polarization resolved study of the low energy band structure in the optimally doped iron pnictide superconductor Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ (T$_c$=37K) using angle resolved photoemission spectroscopy. Polarization-contrasted measure ments are used to identify and trace all three low energy hole-like bands predicted by local density approximation (LDA) calculations. The photoemitted electrons reveal an inconsistency with LDA-predicted symmetries along the $Gamma$-X high symmetry momentum axis, due to unexpectedly strong rotational anisotropy in electron kinetics. We evaluate many-body effects such as Mott-Hubbard interactions that are likely to underlie the anomaly, and discuss how the observed deviations from LDA band structure affect the energetics of iron pnictide Cooper pairing in the hole doped regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا