ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - F.R. Ferraro 2015
We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting HST/ACS images acquired in Directors Discretionary Time shortly after (approximately 1 month) the Swift detec tion of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that currently brightened by ~3 magnitudes, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the Turn-Off/Sub Giant Branch region of Terzan 5. This supports the scenario that the companion should has recently filled its Roche Lobe. Such a system represents the pre-natal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.
We report on the determination of the astrometric, spin and orbital parameters for PSR J1953+1846A, a black widow binary millisecond pulsar in the globular cluster M71. By using the accurate position and orbital parameters obtained from radio timing, we identified the optical companion in ACS/Hubble Space Telescope images. It turns out to be a faint (m_F606W>=24, m_F814W>=23) and variable star located at only ~0.06 from the pulsar timing position. The light curve shows a maximum at the pulsar inferior conjunction and a minimum at the pulsar superior conjunction, thus confirming the association with the system. The shape of the optical modulation suggests that the companion star is heated, likely by the pulsar wind. The comparison with the X-ray light curve possibly suggests the presence of an intra-binary shock due to the interaction between the pulsar wind and the material released by the companion. This is the second identification (after COM-M5C) of an optical companion to a black widow pulsar in a globular cluster. Interestingly, the two companions show a similar light curve and share the same position in the color magnitude diagram.
We report on the determination of astrometric, spin and orbital parameters for PSR J1518+0204C, a black widow binary millisecond pulsar in the globular cluster M5. The accurate position and orbital parameters obtained from radio timing allowed us to search for the optical companion. By using WFC3/HST images we identified a very faint variable star (m_F390W > 24.8, m_F606W > 24.3, m_F814W > 23.1) located at only 0.25 from the pulsars timing position. Due to its strong variability, this star is visible only in a sub-sample of images. However, the light curve obtained folding the available data with the orbital parameters of the pulsar shows a maximum at the pulsar inferior conjunction and a possible minimum at the pulsar superior conjunction. Furthermore, the shape of the optical modulation indicates a heating process possibly due to the pulsar wind. This is the first identification of an optical companion to a black widow pulsar in the dense stellar environment of a globular cluster.
116 - C. Pallanca 2013
We report on the identification of the optical counterpart to the recently detected INTEGRAL transient IGR J18245-2452 in the Galactic globular cluster M28. From the analysis of a multi epoch HST dataset we have identified a strongly variable star po sitionally coincident with the radio and Chandra X-ray sources associated to the INTEGRAL transient. The star has been detected during both a quiescent and an outburst state. In the former case it appears as a faint, unperturbed main sequence star, while in the latter state it is about two magnitudes brighter and slightly bluer than main sequence stars. We also detected Halpha excess during the outburst state, suggestive of active accretion processes by the neutron star.
105 - C. Pallanca 2013
We present the identification of the companion star to the intermediate mass binary pulsar J1439-5501 obtained by means of ground-based deep images in the B, V and I bands, acquired with FORS2 mounted at the ESO-VLT. The companion is a massive white dwarf (WD) with B=23.57+-0.02, V=23.21+-0.01 and I=22.96+-0.01, located at only ~0.05 from the pulsar radio position. Comparing the WD location in the (B, B-V) and (V, V-I) Color-Magnitude diagrams with theoretical cooling sequences we derived a range of plausible combinations of companion masses (1<~Mcom<~1.3 Msun), distances (d<~1200 pc), radii (<~7.8 10^3 Rsun) and temperatures (T=31350^{+21500}_{-7400}). From the PSR mass function and the estimated mass range we also constrained the inclination angle i >~ 55 degrees and the pulsar mass (Mpsr <~2.2 Msun). The comparison between the WD cooling age and the spin down age suggests that the latter is overestimated by a factor of about ten.
We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary pulsar PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Telescope in the Gala ctic plane. We found a faint star (V~26.7) nearly coincident (delta r ~0.28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best seeing conditions), thus indicating that it is variable. Although our observations do not sample the entire orbital period (P=0.28 d) of the pulsar, we found that the optical modulation of the variable star nicely correlates with the pulsar orbital period and describes a well defined peak (R~25.6) at Phi=0.75, suggesting a modulation due to the pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is a heavily ablated very low mass star (~ 0.02Msun) that completely filled its Roche Lobe.
We present the first optical observations of the unique system J0737-3039 (composed of two pulsars, hereafter PSR-A and PSR-B). Ultra-deep optical observations, performed with the High Resolution Camera of the Advanced Camera for Surveys on board the Hubble Space Telescope could not detect any optical emission from the system down to m_F435W=27.0 and m_F606W=28.3. The estimated optical flux limits are used to constrain the three-component (two thermal and one non-thermal) model recently proposed to reproduce the XMM-Newton X-ray spectrum. They suggest the presence of a break at low energies in the non-thermal power law component of PSR-A and are compatible with the expected black-body emission from the PSR-B surface. The corresponding efficiency of the optical emission from PSR-As magnetosphere would be comparable to that of other Myr-old pulsars, thus suggesting that this parameter may not dramatically evolve over a time-scale of a few Myr.
94 - C. Pallanca 2010
We report on the optical identification of the companion star to the eclipsing millisecond pulsar PSR J1824-2452H in the galactic globular cluster M28 (NGC 6626). This star is at only 0.2 from the nominal position of the pulsar and it shows optical v ariability (~ 0.25 mag) that nicely correlates with the pulsar orbital period. It is located on the blue side of the cluster main sequence, ~1.5 mag fainter than the turn-off point. The observed light curve shows two distinct and asymmetric minima, suggesting that the companion star is suffering tidal distortion from the pulsar. This discovery increases the number of non-degenerate MSP companions optically identified so far in globular clusters (4 out of 7), suggesting that these systems could be a common outcome of the pulsar recycling process, at least in dense environments where they can be originated by exchange interactions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا