ترغب بنشر مسار تعليمي؟ اضغط هنا

We report ultrafast transient-grating measurements of crystals of the three-dimensional Dirac semimetal cadmium arsenide, Cd3As2, at both room temperature and 80 K. After photoexcitation with 1.5-eV photons, charge-carriers relax by two processes, on e of duration 500 fs and the other of duration 3.1 ps. By measuring the complex phase of the change in reflectance, we determine that the faster signal corresponds to a decrease in absorption, and the slower signal to a decrease in the lights phase velocity, at the probe energy. We attribute these signals to electrons filling of phase space, first near the photon energy and later at lower energy. We attribute their decay to cooling by rapid emission of optical phonons, then slower emission of acoustic phonons. We also present evidence that both the electrons and the lattice are strongly heated.
We report ultrafast transient-grating experiments on heavily p-type InP at 15 K. Our measurement reveals the dynamics and diffusion of photoexcited electrons and holes as a function of their density n in the range 2E16 to 6E17 cm-3. After the first f ew picoseconds the grating decays primarily due to ambipolar diffusion. While at low density we observe a regime in which the ambipolar diffusion is electron-dominated and increases rapidly with n, at high n it appears to saturate at 34 cm2/s. We present a simple calculation that reproduces the main results of our measurements as well as of previously published measurements that had shown diffusion to be a flat or decreasing function of n. By accounting for effect of density on charge susceptibility we show that, in p-type semiconductors, the regime we observe of increasing ambipolar diffusion is unique to heavy doping and low temperature, where both the holes and electrons are degenerate; in this regime the electronic and ambipolar diffusion are nearly equal. The saturation is identified as a crossover to ambipolar diffusion dominated by the majority carriers, the holes. At short times the transient-grating signal rises gradually. This rise reveals cooling of hot electrons and, at high photocarrier density, allows us to measure ambipolar diffusion of 110 cm2/s in the hot-carrier regime.
We report ultrafast transient-grating measurements, above and below the Curie temperature, of the dilute ferromagnetic semiconductor (Ga,Mn)As containing 6% Mn. At 80 K (15 K), we observe that photoexcited electrons in the conduction band have a life time of 8 ps (5 ps) and diffuse at about 70 cm2/s (60 cm2/s). Such rapid diffusion requires either an electronic mobility exceeding 7,700 cm2/Vs or a conduction-band effective mass less than half the GaAs value. Our data suggest that neither the scattering rate nor the effective mass of the (Ga,Mn)As conduction band differs significantly from that of GaAs.
178 - C. P. Weber , Craig A. Benko , 2011
We use optical transient-grating spectroscopy to measure spin diffusion of optically oriented electrons in bulk, semi-insulating GaAs(100). Trapping and recombination do not quickly deplete the photoexcited population. The spin diffusion coefficient of 88 +/- 12 cm2/s is roughly constant at temperatures from 15 K to 150 K, and the spin diffusion length is at least 450 nm. We show that it is possible to use spin diffusion to estimate the electron diffusion coefficient. Due to electron-electron interactions, the electron diffusion is 1.4 times larger than the spin diffusion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا