ترغب بنشر مسار تعليمي؟ اضغط هنا

We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyt e-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ~0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have re-detected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17ms. In addition, PSR J1244-6359 is a mildly-recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09, and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly-discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.
366 - C. Ng , M. Bailes , S. D. Bates 2014
We report on the discovery of four millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) pulsar survey being conducted at the Parkes 64-m radio telescope. All four MSPs are in binary systems and are likely to have white dwarf compani ons. In addition, we present updated timing solutions for 12 previously published HTRU MSPs, revealing new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017-7156. We discuss the case of PSR J1801-3210, which shows no significant period derivative after four years of timing data. Our best-fit solution shows a period derivative of the order of $10^{-23}$, an extremely small number compared to that of a typical MSP. However, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic period derivative is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801-3210 in the strong equivalence principle test due to its wide and circular orbit. In a broader comparison with the known MSP population, we suggest a correlation between higher mass functions and the presence of eclipses in `very low-mass binary pulsars, implying that eclipses are observed in systems with high orbital inclinations. We also suggest that the distribution of the total mass of binary systems is inversely-related to the Galactic height distribution. Finally, we report on the first detection of PSRs J1543-5149 and J1811-2404 as gamma-ray pulsars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا