ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequ ency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.
63 - C. Milian , A. Jarnac , Y. Brelet 2014
We analyze numerically and experimentally the effect of the input pulse chirp on the nonlinear energy deposition from $5 mu$J fs-pulses at $800$ nm to water. Numerical results are also shown for pulses at $400$ nm, where linear losses are minimized, and for different focusing geometries. Input chirp is found to have a big impact on the deposited energy and on the plasma distribution around focus, thus providing a simple and effective mechanism to tune the electron density and energy deposition. We identify three relevant ways in which plasma features may be tuned.
We present a first-principles derivation of the variational equations describing the dynamics of the interaction of a spatial soliton and a surface plasmon polariton (SPP) propagating along a metal/dielectric interface. The variational ansatz is base d on the existence of solutions exhibiting differentiated and spatially resolvable localized soliton and SPP components. These states, referred to as soliplasmons, can be physically understood as bound states of a soliton and a SPP. Their respective dispersion relations permit the existence of a resonant interaction between them, as pointed out in Ref.[1]. The existence of soliplasmon states and their interesting nonlinear resonant behavior has been validated already by full-vector simulations of the nonlinear Maxwells equations, as reported in Ref.[2]. Here, we provide the theoretical demonstration of the nonlinear resonator model previously introduced in our previous work and analyze all the approximations needed to obtain it. We also provide some extensions of the model to improve its applicability.
We demonstrate that the dark soliton trains in optical fibers with a zero of the group velocity dispersion can generate broad spectral distribution (continuum) associated with the resonant dispersive radiation emitted by solitons. This radiation is e ither enhanced or suppressed by the Raman scattering depending on the sign of the third order dispersion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا