ترغب بنشر مسار تعليمي؟ اضغط هنا

The Yale/SMARTS optical-near-IR monitoring program has followed the variations in emission of the Fermi-LAT monitored blazars in the southern sky with closely spaced observations since 2008. We report the discovery of an optical-near-IR (OIR) outburs t with no accompanying gamma-rays in the blazar PKS 0208-512, one of the targets of this program. While the source undergoes three outbursts of 1 mag or more at OIR wavelengths lasting for longer than 3 months during 2008-2011, only interval 1 and 3 have corresponding bright phases in GeV energies lasting longer than 1 month. The OIR outburst during interval 2 is comparable in brightness and temporal extent to the OIR flares during intervals 1 and 3 which do have gamma-ray counterparts. Gamma-ray and OIR variability are very well-correlated in most cases in the Fermi blazars and the lack of correlation in this case is anomalous. By analyzing the gamma-ray, OIR, and supporting multi-wavelength variability data in details, we speculate that the location of the outburst in the jet during interval 2 was closer to the black hole where the jet is more compact and the magnetic field strength is higher, and the bulk Lorentz factor of the material in the jet is smaller. These result in a much lower Compton dominance and no observable gamma-ray outburst during interval 2.
We report the discovery of an anomalous flare in a bright blazar, namely, PKS 0208-512, one of the targets of the Yale/SMARTS optical-near-infrared (OIR) monitoring program of Fermi blazars. We identify three intervals during which PKS 0208-512 under goes outbursts at OIR wavelengths lasting for longer than 3 months. Its brightness increases and then decreases again by at least 1 magnitude in these intervals. In contrast, the source undergoes bright phases in GeV energies lasting for longer than 1 month during intervals 1 and 3 only. The OIR outburst during interval 2 is comparable in brightness and temporal extent to the OIR flares during intervals 1 and 3 which do have gamma-ray counterparts. By analyzing the gamma-ray, OIR, and supporting multi-wavelength variability data in details, we speculate that the OIR outburst during interval 2 was caused by a change in the magnetic field without any change in the total number of emitting electrons or Doppler factor of the emitting region. Alternatively, it is possible that the location of the outburst in the jet during interval 2 was closer to the black hole where the jet is more compact and the bulk Lorentz factor of the material in the jet is smaller. We also discuss the complex OIR spectral behavior during these three intervals.
112 - E. Treister , C. M. Urry 2009
We constrain the number density and evolution of Compton-thick Active Galactic Nuclei (AGN), and their contribution to the extragalactic X-ray background. In the local Universe we use the wide area surveys from the Swift and INTEGRAL satellites, whil e for high redshifts we explore candidate selections based on mid-IR parameters. We present the properties of a sample of 211 heavily-obscured AGN candidates in the Extended Chandra Deep Field-South (ECDF-S) selecting objects with f24/fR>1000 and R-K>4.5. The X-ray to mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and ~2 orders of magnitude smaller than for the general AGN population, suggesting column densities of NH>5x10^24 cm^-2. The space density of CT AGN at z~2 derived from these observations is ~10^-5 Mpc^{-3}, finding a strong evolution in the number of LX>10^44 erg/s sources from z=1.5 to 2.5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا