ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H2O an d O2 in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm -- regions largely unobservable from the ground. Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486--492 and 541--576 GHz with rather uniform sensitivity (22--25 mK baseline noise). Odins 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 hours each). An on-source integration time of 20 hours was achieved for most bands. The entire campaign consumed ~1100 orbits, each containing one hour of serviceable astro-observation. We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 1(1,0)--1(0,1) transitions of ortho-H2O, H218O and H217O, the high energy 6(2,4)--7(1,7) line of para-H2O and the HDO(2,0,2--1,1,1) line have been observed, as well as the 1,0--0,1 lines from NH3 and its rare isotopologue 15NH3. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the line wings of the H218O, H217O and 13CO lines changing the true linewidths of the outflow emission.
We investigate the physical and chemical conditions in a typical star forming region, including an unbiased search for new molecules in a spectral region previously unobserved. Due to its proximity, the Orion KL region offers a unique laboratory of m olecular astrophysics in a chemically rich, massive star forming region. Several ground-based spectral line surveys have been made, but due to the absorption by water and oxygen, the terrestrial atmosphere is completely opaque at frequencies around 487 and 557 GHz. To cover these frequencies we used the Odin satellite to perform a spectral line survey in the frequency ranges 486-492 GHz and 541-577 GHz, filling the gaps between previous spectral scans. Odins high main beam efficiency and observations performed outside the atmosphere make our intensity scale very well determined. We observed 280 spectral lines from 38 molecules including isotopologues, and, in addition, 64 unidentified lines. The beam-averaged emission is dominated by CO, H2O, SO2, SO, 13CO and CH3OH. Species with the largest number of lines are CH3OH, (CH33)2O, SO2, 13CH3OH, CH3CN and NO. Six water lines are detected including the ground state rotational transition o-H2O, its isotopologues o-H218O and o-H217O, the Hot Core tracing p-H2O transition 6(2,4)-7(1,7), and the 2(0, 2)-1(1,1) transition of HDO. Other lines of special interest are the 1_0-0_0 transition of NH3 and its isotopologue 15NH3. Isotopologue abundance ratios of D/H, 12C/13C, 32S/34S, 34S/33S, and 18O/17O are estimated. The temperatures, column densities and abundances in the various subregions are estimated, and we find very high gas-phase abundances of H2O, NH3, SO2, SO, NO, and CH3OH. A comparison with the ice inventory of ISO sheds new light on the origin of the abundant gas-phase molecules.
We have used the Odin satellite to obtain strip maps of the ground-state rotational transitions of ortho-water and ortho-ammonia, as well as CO(5-4) and 13CO(5-4) across the PDR, and H218O in the central position. A physi-chemical inhomogeneous PDR m odel was used to compute the temperature and abundance distributions for water, ammonia and CO. A multi-zone escape probability method then calculated the level populations and intensity distributions. These results are compared to a homogeneous model computed with an enhanced version of the RADEX code. H2O, NH3 and 13CO show emission from an extended PDR with a narrow line width of ~3 kms. Like CO, the water line profile is dominated by outflow emission, however, mainly in the red wing. The PDR model suggests that the water emission mainly arises from the surfaces of optically thick, high density clumps with n(H2)>10^6 cm^-3 and a clump water abundance, with respect to H2, of 5x10^-8. The mean water abundance in the PDR is 5x10^-9, and between ~2x10^-8 -- 2x10^-7 in the outflow derived from a simple two-level approximation. Ammonia is also observed in the extended clumpy PDR, likely from the same high density and warm clumps as water. The average ammonia abundance is about the same as for water: 4x10^-9 and 8x10^-9 given by the PDR model and RADEX, respectively. The similarity of water and ammonia PDR emission is also seen in the almost identical line profiles observed close to the bright rim. Around the central position, ammonia also shows some outflow emission although weaker than water in the red wing. Predictions of the H2O(110-101) and (111-000) antenna temperatures across the PDR are estimated with our PDR model for the forthcoming observations with the Herschel Space Observatory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا