ترغب بنشر مسار تعليمي؟ اضغط هنا

The estimated stellar masses of galaxies are widely used to characterize how the galaxy population evolves over cosmic time. If stellar masses can be estimated in a robust manner, free from any bias, global diagnostics such as the stellar mass functi on can be used to constrain the physics of galaxy formation. We explore how galaxy stellar masses, estimated by fitting broad-band spectral energy distributions (SEDs) with stellar population models, can be biased as a result of commonly adopted assumptions for the star-formation and chemical enrichment histories, recycled fractions and dust attenuation curves of galaxies. We apply the observational technique of broad-band SED fitting to model galaxy SEDs calculated by the theoretical galaxy formation model GALFORM, isolating the effect of each of these assumptions. We find that, averaged over the entire galaxy population, the common assumption of exponentially declining star-formation histories does not adversely affect stellar mass estimation. We show that fixing the metallicity in SED fitting or using sparsely sampled metallicity grids can introduce mass dependent systematics into stellar mass estimates. We find that the common assumption of a star-dust geometry corresponding to a uniform foreground dust screen can cause the stellar masses of dusty model galaxies to be significantly underestimated. Finally, we show that stellar mass functions recovered by applying SED fitting to model galaxies at high redshift can differ significantly in both shape and normalization from the intrinsic mass functions predicted by a given model. Given these differences, our methodology of using stellar masses estimated from model galaxy SEDs offers a new, self-consistent way to compare model predictions with observations.
56 - C. M. Baugh 2013
Large surveys of the local Universe have shown that galaxies with different intrinsic properties, such as colour, luminosity and morphological type display a range of clustering amplitudes. Galaxies are therefore not faithful tracers of the underlyin g matter distribution. This modulation of galaxy clustering, called bias, contains information about the physics behind galaxy formation. It is also a systematic to be overcome before the large-scale structure of the Universe can be used as a cosmological probe. Two types of approaches have been developed to model the clustering of galaxies. The first class is empirical and filters or weights the distribution of dark matter to reproduce the measured clustering. In the second approach an attempt is made to model the physics which governs fate of baryons in order to predict the number of galaxies in dark matter haloes. I will review the development of both approaches and summarize what we have learnt about galaxy bias.
169 - V. Gonzalez-Perez 2012
Using GALFORM, a semi-analytical model of galaxy formation in the Lambda cold dark matter cosmology, we study the rest-frame ultraviolet (UV) colours of Lyman-break galaxies (LBGs) in the redshift range 2.5 < z < 10. As the impact of dust on UV lumin osity can be dramatic, our model includes a self-consistent computation of dust attenuation based on a radiative transfer model. We find that intrinsically brighter galaxies suffer stronger dust attenuation than fainter ones, though the relation has a large scatter. The model predicts galaxies with UV colours consistent with the colour selection regions designed to select LBGs in observational surveys. We find that the drop-out technique that selects LBGs based on two rest-frame UV colours is robust and effective, selecting more than 70 per cent of UV bright galaxies at a given redshift. We investigate the impact on the predicted UV colours of varying selected model parameters. We find that the UV colours are most sensitive to the modelling of dust attenuation and in particular, to the extinction curve used in the radiative transfer calculation. If we assume a Milky Way dust extinction curve, the predicted UV continuum slopes are, in general, bluer than observed. However, we find that the opposite is true when using the Small Magellanic Cloud dust extinction curve. This demonstrates the strong dependence of UV colours on dust properties and highlights the inadequacy of using the UV continuum slope as a tracer of dust attenuation without any further knowledge of the galaxy inclination or dust characteristics in high redshift galaxies.
We study the role of submillimetre galaxies (SMGs) in the galaxy formation process in the Lambda Cold Dark Matter cosmology. We use the Baugh et al. (2005) semi-analytical model, which matches the observed SMG number counts and redshift distribution by assuming a top-heavy initial mass function (IMF) in bursts triggered by galaxy mergers. We build galaxy merger trees and follow the evolution and properties of SMGs and their descendants. Our primary sample of model SMGs consists of galaxies which had 850 mu fluxes brighter than 5 mJy at some redshift z>1. Our model predicts that the present-day descendants of such SMGs cover a wide range of stellar masses ~ 10^{10} - 10^{12} Msun/h, with a median ~ 10^{11} Msun/h, and that more than 70% of these descendants are bulge-dominated. More than 50% of present day galaxies with stellar masses larger than 7 x 10^{11} Msun/h are predicted to be descendants of such SMGs. We find that although SMGs make an important contribution to the total star formation rate at z~2, the final stellar mass produced in the submillimetre phase contributes only 0.2% of the total present-day stellar mass, and 2% of the stellar mass of SMG descendants, in stark contrast to the popular picture in which the SMG phase marks the production of the bulk of the mass of present day massive ellipticals.
We introduce an objective method to assess the probability of finding extreme events in the distribution of cold dark matter such as voids, overdensities or very high mass haloes. Our approach uses an ensemble of N-body simulations of the hierar- chi cal clustering of dark matter to find extreme structures. The frequency of extreme events, in our case the cell or smoothing volume with the highest count of cluster-mass dark matter haloes, is well described by a Gumbel distribution. This distribution can then be used to forecast the probability of finding even more extreme events, which would otherwise require a much larger ensemble of simulations to quantify. We use our technique to assess the chance of finding concentrations of massive clusters or super- clusters, like the two found in the two-degree field galaxy redshift survey (2dFGRS), using a counts-in-cells analysis. The Gumbel distribution gives an excellent descrip- tion of the distribution of extreme cell counts across two large ensembles of simulations covering different cosmologies, and also when measuring the clustering in both real and redshift space. We find examples of structures like those found in the 2dFGRS in the simulations. The chance of finding such structures in a volume equal to that of the 2dFGRS is around 2%.
Future galaxy surveys will map the galaxy distribution in the redshift interval $0.5<z<2$ using near-infrared cameras and spectrographs. The primary science goal of such surveys is to constrain the nature of the dark energy by measuring the large-sca le structure of the Universe. This requires a tracer of the underlying dark matter which maximizes the useful volume of the survey. We investigate two potential survey selection methods: an emission line sample based on the ha line and a sample selected in the H-band. We present predictions for the abundance and clustering of such galaxies, using two publish
57 - C. G. Lacey 2009
We use a model for the evolution of galaxies in the far-IR based on the LambdaCDM cosmology to make detailed predictions for upcoming cosmological surveys with the Herschel Space Observatory. We use the combined GALFORM semi-analytical galaxy formati on model and GRASIL spectrophotometric code to compute galaxy SEDs including the reprocessing of radiation by dust. The model, which is the same as that in Baugh et al. (2005), assumes two different IMFs: a normal solar neighbourhood IMF for quiescent star formation in disks, and a very top-heavy IMF in starbursts triggered by galaxy mergers. We have shown previously that the top-heavy IMF appears necessary to explain the number counts and redshifts of faint sub-mm galaxies. In this paper, we present predictions for galaxy luminosity functions, number counts and redshift distributions in the Herschel imaging bands. We find that source confusion will be a serious problem in the deepest planned surveys. We also show predictions for physical properties such as star formation rates and stellar, gas and halo masses, together with fluxes at other wavelengths (from the far-UV to the radio) relevant for multi-wavelength follow-up observations. We investigate what fraction of the total IR emission from dust and of the high-mass star formation over the history of the Universe should be resolved by planned surveys with Herschel, and find a fraction ~30-50%, depending on confusion. Finally, we show that galaxies in Herschel surveys should be significantly clustered.
Luminous red galaxies (LRGs) are much rarer and more massive than L* galaxies. Coupled with their extreme colours, LRGs therefore provide a demanding testing ground for the physics of massive galaxy formation. We present the first self-consistent pre dictions for the abundance and properties of LRGs in hierarchical structure formation models. We test two published models which use quite different mechanisms to suppress the formation of massive galaxies: the Bower et al. (2006) model, which invokes ``AGN-feedback to prevent gas from cooling in massive haloes, and the Baugh et al. (2005) model which relies upon a ``superwind to eject gas before it is turned into stars. Without adjusting any parameters, the Bower et al. model gives an excellent match to the observed luminosity function of LRGs in the SDSS (with a median redshift of z=0.24) and to their clustering; the Baugh et al. model is less successful in these respects. Both models fail to match the observed abundance of LRGs at z=0.5 to better than a factor of ~2. In the models, LRGs are typically bulge dominated systems with M* of ~2x10^11 h^{-1} M_sun and velocity dispersions of ~250 km s^{-1}. Around half of the stellar mass in the model LRGs is already formed by z~2.2 and is assembled into one main progenitor by z~1.5; on average, only 25% of the mass of the main progenitor is added after z~1. LRGs are predicted to be found in a wide range of halo masses, a conclusion which relies on properly taking into account the scatter in the formation histories of haloes. Remarkably, we find that the correlation function of LRGs is predicted to be a power law down to small pair separations, in excellent agreement with observational estimates. Neither the Bower et al. nor the Baugh et al. model is able to reproduce the observed radii of LRGs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا