ترغب بنشر مسار تعليمي؟ اضغط هنا

The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) provides a new tool for the systematic observation of white-light flares, including Doppler and magnetic information as well as continuum. In our initial analysis of the highly impulsive gamma-ray flare SOL2010-06-12T00:57 (Mart{i}nez Oliveros et al., Solar Phys., 269, 269, 2011), we reported the signature of a strong blueshift in the two footpoint sources. Concerned that this might be an artifact due to aliasing peculiar to the HMI instrument, we undertook a comparative analysis of Global Oscillations Network Group (GONG++) observations of the same flare, using the PArametric Smearing Correction ALgorithm (PASCAL) algorithm to correct for artifacts caused by variations in atmospheric smearing. This analysis confirms the artifactual nature of the apparent blueshift in the HMI observations, finding weak redshifts at the footpoints instead. We describe the use of PASCAL with GONG++ observations as a complement to the SDO observations and discuss constraints imposed by the use of HMI far from its design conditions. With proper precautions, these data provide rich information on flares and transients.
The physics of transient seismic emission in flares remains largely mysterious. Its discoverers proposed that these sunquakes are the signature of a shock driven by thick-target heating of the flaring chromosphere. H-{alpha} observations show evidenc e for such a shock. However, simulations of shocks driven by impulsive chromospheric heating show withering radiative losses as the shock proceeds downward. The compression of the shocked gas heats and increases its density, making it more radiative. So, radiative losses increase radically with the strength of the shock. This has introduced doubt that sufficient energy from such a shock can penetrate into the solar interior to match that indicated by the helioseismic signatures. We point out that simulations of acoustic transients driven by impulsive heating have no account for magnetic fields characteristic of transient-seismic-source environments. These must have a major impact on the seismic flux conducted into the solar interior. A strong horizontal magnetic field, for example, greatly increases the compressional modulus of the chromospheric medium. This greatly reduces compression of the gas, hence the radiative losses as the transient passes through it. This could explain the strong affinity of seismic sources to regions of strong, highly inclined penumbral magnetic fields. The role of inclined magnetic fields, then, is fundamental to our understanding of the role of impulsive heating in transient seismic emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا