ترغب بنشر مسار تعليمي؟ اضغط هنا

107 - W. P. Huang , Z. B. Tang , C. Li 2014
The water Cherenkov detector array (WCDA) for the large high altitude air shower observatory(LHAASO) will employ more than 3600 hemisphere 8 inch photomultiplier tubes (PMT). The good time performance of PMT, especially the transit time spread (TTS), is required for WCDA. TTS is usually defined as the TTS of single photoelectron, and usually determined by using single photoelectron counting technique. A method using the photoelectron spectrum is researched for the measurement of TTS. The method is appropriate for multi-photoelectrons and makes it possible to measure the TTS of different photoelectrons at the same time. The TTS of different photoelectrons is measured for Hamamatsu R5912 with the divider circuit designed in specifically. The TTS of single photoelectron is determined to 3.3 ns and satisfies the requirement of WCDA.
359 - S. Yang , Y.J. Sun , C. Li 2014
In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, toget her with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.
102 - C. Li , Y. Dai , J. -C. Vial 2013
An X3.4 solar flare and a fast halo coronal mass ejection (CME) occurred on 2006 December 13, accompanied by a high flux of energetic particles recorded both in near-Earth space and at ground level. Our purpose is to provide evidence of flare acceler ation in a major solar energetic particle (SEP) event. We first present observations from ACE/EPAM, GOES, and the Apatity neutron monitor. It is found that the initial particle release time coincides with the flare emission and that the spectrum becomes softer and the anisotropy becomes weaker during particle injection, indicating that the acceleration source changes from a confined coronal site to a widespread interplanetary CME-driven shock. We then describe a comprehensive study of the associated flare active region. By use of imaging data from HINODE/SOT and SOHO/MDI magnetogram, we infer the flare magnetic reconnection rate in the form of the magnetic flux change rate. This correlates in time with the microwave emission, indicating a physical link between the flare magnetic reconnection and the acceleration of nonthermal particles. Combining radio spectrograph data from Huairou/NOAC, Culgoora/IPS, Learmonth/RSTN, and WAVES/WIND leads to a continuous and longlasting radio burst extending from a few GHz down to several kHz. Based on the photospheric vector magnetogram from Huairou/NOAC and the nonlinear force free field (NFFF) reconstruction method, we derive the 3D magnetic field configuration shortly after the eruption. Furthermore, we also compute coronal field lines extending to a few solar radii using a potential-field source-surface (PFSS) model. Both the so-called type III-l burst and the magnetic field configuration suggest that open-field lines extend from the flare active region into interplanetary space, allowing the accelerated and charged particles escape.
65 - Y. T. Li , C. Li , M. L. Zhou 2011
We report a plasma-based strong THz source generated by using intense femtosecond laser pulses to irradiate solid targets at relativistic intensity >10^18W/cm2. Energies up to 50 microJ/sr per THz pulse is observed in the specular direction when the laser pulses are incident onto a copper foil at 67.5 degree. The source appears to be linearly polarized. The temporal, spectral properties of the THz are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a strong THz source allows potential applications in THz nonlinear physics.
22 - T. Li , R. X. Ye , C. Li 2009
Magnetic resonance coupling between connected split ring resonators (SRRs) and magnetic plasmon (MP) excitations in the connected SRR chains were theoretically studied. By changing the connection configuration, two different coupling behaviors were o bserved, and therefore two kinds of MP bands were formed in the connected ring chains, accordingly. These MPs were revealed with positive and negative dispersion for the homo- and anti-connected chain, respectively. Notably, these two MP modes both have wide bandwidth due to the conductive coupling. Moreover, the anti-connected chain is found supporting a novel negative propagating wave with a wide band starting from zero frequency, which is a fancy phenomenon in one-dimensional system.
223 - Y.J. Sun , C. Li , M. Shao 2008
A new kind of Multi-gap Resistive Plate Chamber (MRPC) has been built for the large-area Muon Telescope Detector (MTD) for the STAR experiment at RHIC. These long read-out strip MRPCs (LMRPCs) have an active area of 87.0 x 17.0 cm2 and ten 250 um-thi ck gas gaps arranged as a double stack. Each read-out strip is 2.5 cm wide and 90 cm long. The signals are read-out at both ends of each strip. Cosmic ray tests indicate a time resolution of ~70 ps and a detection efficiency of greater than 95%. Beam tests performed at T963 at Fermilab indicate a time resolution of 60-70 ps and a spatial resolution of ~1 cm along the strip direction.
131 - T. C. Li , H. Kelkar , D. Medellin 2008
We report an experimental method to create optical lattices with real-time control of their periodicity. We demonstrate a continuous change of the lattice periodicity from 0.96 $mu$m to 11.2 $mu$m in one second, while the center fringe only moves les s than 2.7 $mu$m during the whole process. This provides a powerful tool for controlling ultracold atoms in optical lattices, where small spacing is essential for quantum tunneling, and large spacing enables single-site manipulation and spatially resolved detection.
74 - C. Li , Y. H. Tang , Y. Dai 2007
An X17.2 solar flare occurred on 2003 October 28, accompanied by multi-wavelength emissions and a high flux of relativistic particles observed at 1AU. We present the analytic results of the TRACE, SOHO, RHESSI, ACE, GOES, hard X-ray (INTEGRAL satelli te), radio (Onderejov radio telescope), and neutron monitor data. It is found that the inferred magnetic reconnection electric field correlates well with the hard X-ray, gamma-ray, and neutron emission at the Sun. Thus the flares magnetic reconnection probably makes a crucial contribution to the prompt relativistic particles, which could be detected at 1 AU. Since the neutrons were emitted a few minutes before the injection of protons and electrons, we propose a magnetic-field evolution configuration to explain this delay. We do not exclude the effect of CME-driven shock, which probably plays an important role in the delayed gradual phase of solar energetic particles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا