ترغب بنشر مسار تعليمي؟ اضغط هنا

We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on-board the Hubble Spac e Telescope (HST) by the Legacy ExtraGalactic Ultraviolet Survey (LEGUS). The multi-band observations span from the near-ultraviolet through the optical (F275W, F336W, F438W, F555W, and F814W). The apparent brightness of the echo at the time was ~21--22 mag in all of these bands. The echo appears circular, although less obviously as a ring, with an inhomogeneous surface brightness, in particular, a prominent enhanced brightness to the southeast. The SN itself was still detectable, particularly in the redder bands. We are able to model the light echo as the time-integrated SN light scattered off of diffuse interstellar dust in the SN environment. We have assumed that this dust is analogous to that in the Milky Way with R_V=3.1. The SN light curves that we consider also include models of the unobserved early burst of light from the SN shock breakout. Our analysis of the echo suggests that the distance from the SN to the scattering dust elements along the echo is ~45 pc. The implied visual extinction for the echo-producing dust is consistent with estimates made previously from the SN itself. Finally, our estimate of the SN brightness in F814W is fainter than that measured for the red supergiant star at the precise SN location in pre-SN images, possibly indicating that the star has vanished and confirming it as the likely SN progenitor.
Using a sample of 299 Ha-selected galaxies at z~0.8, we study the relationship between galaxy stellar mass, gas-phase metallicity, and star formation rate (SFR), and compare to previous results. We use deep optical spectra obtained with the IMACS spe ctrograph at the Magellan telescope to measure strong oxygen lines. We combine these spectra and metallicities with (1) rest-frame UV-to-optical imaging, which allows us to determine stellar masses and dust attenuation corrections, and (2) Ha narrowband imaging, which provides a robust measure of the instantaneous SFR. Our sample spans stellar masses of 10^9 to 6*10^11 solar masses, SFRs of 0.4 to 270 solar masses per year, and metal abundances of 12+log(O/H)~8.3-9.1 (~0.4-2.6 solar metallicity). The correlations that we find between the Ha-based SFR and stellar mass (i.e., the star-forming main sequence), and between the stellar mass and metallicity, are both consistent with previous z~1 studies of star-forming galaxies. We then study the relationship between the three properties using various plane-fitting techniques (Lara-Lopez et al.) and a curve-fitting projection (Mannucci et al.). In all cases, we exclude strong dependence of the M-Z relation on SFR, but are unable to distinguish between moderate and no dependence. Our results are consistent with previous mass-metallicity-SFR studies. We check whether dataset limitations may obscure a strong dependence on the SFR by using mock samples drawn from the SDSS. These experiments reveal that the adopted signal-to-noise cuts may have a significant effect on the measured dependence. Further work is needed to investigate these results, and to test whether a fundamental metallicity relation or a fundamental plane describes star-forming galaxies across cosmic time.
154 - B.-C. Lee , I. Han , M.-G. Park 2014
Aims. We study the low-amplitude and long-period variations in evolved stars using precise radial velocity measurements. Methods. The high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was used from September 2004 to May 201 4 as part of the exoplanet search program at the Bohyunsan Optical Astronomy Observatory (BOAO). Results. We report the detection of low-amplitude and long-period orbital radial velocity variations in three evolved stars, HD 3574, 63 Cyg, and HD 216946. They have periods of 1061, 982, and 1382 days and semi-amplitudes of 376, 742, and 699 m/s, respectively.
170 - B.-C. Lee , I. Han , M.-G. Park 2014
Auns. The aim of our paper is to investigate the low-amplitude and long-period variations in evolved stars with a precise radial velocity (RV) survey. Methods. The high-resolution, the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was u sed from 2003 to 2013 for a radial velocity survey of giant stars as part of the exoplanet search program at Bohyunsan Optical Astronomy Observatory (BOAO). Results. We report the detection of three new planetary companions orbiting the K giants beta Cnc, mu Leo, and beta UMi. The planetary nature of the radial velocity variations is supported by analyzes of ancillary data. The HIPPARCOS photometry shows no variations with periods close to those in RV variations and there is no strong correlation between the bisector velocity span (BVS) and the radial velocities for each star. Furthermore, the stars show weak or no core reversal in Ca II H lines indicating that they are inactive stars. The companion to beta Cnc has a minimum mass of 7.8 M_Jup in a 605-day orbit with an eccentricity of 0.08. The giant mu Leo is orbited by a companion of minimum mass of 2.4 M_Jup having a period of 357 days and an eccentricity of 0.09. The giant beta UMi is a known barium star and is suspected of harboring a white dwarf or substellar mass companion. Its companion has a minimum mass of 6.1 M_Jup, a period of 522 days, and an eccentricity e = 0.19.
389 - C. W. Luo , C. C. Lee , H.-J. Chen 2013
This study shows that a terahertz (THz) wave can be generated from the (001) surface of cleaved Bi$_{textrm{2}}$Se$_{textrm{3}}$ and Cu-doped Bi$_{textrm{2}}$Se$_{textrm{3}}$ single crystals using 800 nm femtosecond pulses. The generated THz power is strongly dependent on the carrier concentration of the crystals. An examination of the dependence reveals the two-channel free carrier absorption to which Dirac fermions are indispensable. Dirac fermions in Bi$_{textrm{2}}$Se$_{textrm{3}}$ are significantly better absorbers of THz radiation than bulk carriers at room temperature. Moreover, the characteristics of THz emission confirm the existence of a recently proposed surface phonon branch that is normalized by Dirac fermions.
We present results from a coordinated IR-to-X-ray spectral campaign of the QSO IRAS 13349+2438. Optical spectra reveal extreme Eigenvector-1 characteristics, but the H-beta line width argues against a NLS1 classification; we refine z=0.10853 based on [O III]. We estimate a BH mass=10^9 Msun using 2 independent methods (H-beta line width & SED fits). Blue-shifted absorption (-950km/s & -75km/s) is seen for the 1st time in STIS UV spectra from Ly-alpha, NV, & CIV. The higher velocity UV lines are coincident with the lower-ionisation (xi~1.6) X-ray warm absorber lines. A dusty multiple ionization absorber blueshifted by 700-900km/s is required to fit the X-ray data. Theoretical models comparing different ionising SEDs reveal that a UV-inclusive (i.e., the accretion disc) ionising continuum strongly impacts conclusions for the thermodynamic stability of the warm absorber. Specific to IRAS13349, an Xray-UV ionising SED favors a continuous distribution of ionisation states in a smooth flow (this paper), versus discrete clouds in pressure equilibrium (work by others where UV is omitted). Direct dust detections are seen in both the IR: PAH emission at (7.7 & 11.3)micron which may also be blended with forsterite, and (10 & 18)micron silicate emission, and X-rays: iron dust with a dust-to-gas ratio > 90%. We develop a geometrical model whereby the QSO nuclear region is viewed through the upper atmosphere of an obscuring torus. This sight line is obscured by dust that blocks a direct view of the UV/optical emission region but is largely transparent in X-rays since the gas is ionised. In our model, 20% of the intrinsic UV/optical continuum is scattered into our sight line by the far wall of an obscuring torus. An additional 2.4% of the direct light, which likely dominates the UV emission, is Thomson-scattered into our line-of-sight by another off-plane component of highly ionized gas.
Aims. We have been carrying out a precise radial velocity (RV) survey for K giants to search for and study the origin of the lowamplitude and long-periodic RV variations. Methods. We present high-resolution RV measurements of the K2 giant HD 66141 from December 2003 to January 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). Results. We find that the RV measurements for HD 66141 exhibit a periodic variation of 480.5 +/- 0.5 days with a semi-amplitude of 146.2 +/- 2.7 m/s. The Hipparcos photometry and bisector velocity span (BVS) do not show any obvious correlations with RV variations. We find indeed 706.4 +/- 35.0 day variations in equivalent width (EW) measurements of H_alpha line and 703.0 +/- 39.4 day variations in a space-born measurements 1.25{mu} flux of HD 66141 measured during COBE/DIRBE experiment. We reveal that a mean value of long-period variations is about 705 +/- 53 days and the origin is a rotation period of the star and variability that is caused by surface inhomogeneities. For the 480 day periods of RV variations an orbital motion is the most likely explanation. Assuming a stellar mass of 1.1 +/- 0.1 M_Sun? for HD 66141, we obtain a minimum mass for the planetary companion of 6.0 +/- 0.3 M_Jup with an orbital semi-major axis of 1.2 +/- 0.1 AU and an eccentricity of 0.07 +/- 0.03.
We present measurements of the dust attenuation of Halpha-selected emission-line galaxies at z=0.8 from the NewHalpha narrowband survey. The analysis is based on deep follow-up spectroscopy with Magellan/IMACS, which captures the strong rest-frame op tical emission lines from [OII] lambda 3727 to [OIII] lambda 5007. The spectroscopic sample used in this analysis consists of 341 confirmed Halpha emitters. We place constraints on the AGN fraction using diagnostics which can be applied at intermediate redshift. We find that at least 5% of the objects in our spectroscopic sample can be classified as AGN and 2% are composite, i.e. powered by a combination of star-formation and AGN activity. We measure the dust attenuation for individual objects from the ratios of the higher order Balmer lines. The Hbeta and Hgamma pair of lines is detected with S/N>5 in 55 individual objects and the Hbeta and Hdelta pair is detected in 50 individual objects. We also create stacked spectra to probe the attenuation in objects without individual detections. The median attenuation at Halpha based on the objects with individually detected lines is A(Halpha)=0.9+-1.0 magnitudes, in good agreement with the attenuation found in local samples of star-forming galaxies. We find that the z=0.8 galaxies occupy a similar locus of attenuation as a function of magnitude, mass and SFR as a comparison sample drawn from the SDSS DR4. Both the results from the individual z=0.8 galaxies and from the stacked spectra show consistency with the mass -- attenuation and SFR -- attenuation relations found in the local Universe, indicating that these relations are also applicable at intermediate redshift.
511 - Janice C. Lee 2012
We present first results from a narrowband imaging program for intermediate redshift emission-line galaxies using the newly commissioned FourStar infrared camera at the 6.5m Magellan telescope. To enable prompt identification of Halpha emitters, a pa ir of custom 1% filters, which sample low-airglow atmospheric windows at 1.19 mu m and 2.10 mu m, is used to detect both Halpha and [OII]lambda 3727 emission from the same redshift volume at z=2.2. Initial observations are taken over a 130 arcmin^2 area in the CANDELS-COSMOS field. The exquisite image quality resulting from the combination of the instrument, telescope, and standard site conditions (~0.55 FWHM) allows the 1.19 mu m and 2.10 mu m data to probe 3sigma emission-line depths down to 1.0e-17 erg/s/cm^2 and 1.2e-17 erg/s/cm^2 respectively, in less than 10 hours of integration time in each narrowband. For Halpha at z=0.8 and z=2.2, these fluxes correspond to observed star formation rates of ~0.3 and ~4 Msun/yr respectively. We find 122 sources with a 1.19 mu m excess, and 136 with a 2.10 mu m excess, 41 of which show an excess in both bands. The dual narrowband technique, as implemented here, is estimated to identify about >80% of z=2.2 Halpha emitters in the narrowband excess population. With the most secure such sample obtained to-date, we compute constraints on the faint-end slope of the z=2.2 Halpha luminosity function. These narrow-deep FourStar observations have been obtained as part of the larger NewHalpha Survey, which will combine the data with wide-shallow imaging through a similar narrowband filter pair with NEWFIRM at the KPNO/CTIO 4m telescopes, to enable study of both luminous (but rare) and faint emission-line galaxies in the intermediate redshift universe. [Abridged]
We present a detailed study of the X-ray dust scattering halo of the black hole candidate cygx1 based on two chandra HETGS observations. Using 18 different dust models, including one modified by us (dubbed XLNW), we probe the interstellar medium betw een us and this source. A consistent description of the cloud properties along the line of sight that describes at the same time the halo radial profile, the halo lightcurves, and the column density from source spectroscopy is best achieved with a small subset of these models. Combining the studies of the halo radial profile and the halo lightcurves, we favor a geometric distance to cygx1 of $d=1.81pm{0.09}$,kpc. Our study also shows that there is a dense cloud, which contributes $sim$50% of the dust grains along the line of sight to cygx1, located at $sim1.6$ kpc from us. The remainder of the dust along the line of sight is close to the black hole binary.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا