ترغب بنشر مسار تعليمي؟ اضغط هنا

60 - M. Lombardi , C. Lada , J. Alves 2008
We combine extinction maps from the Two Micron All Sky Survey (2MASS) with Hipparcos and Tycho parallaxes to obtain reliable and high-precision estimates of the distance to the Ophiuchus and Lupus dark complexes. Our analysis, based on a rigorous max imum-likelihood approach, shows that the rho-Ophiuchi cloud is located at (119 +/- 6) pc and the Lupus complex is located at (155 +/- 8) pc; in addition, we are able to put constraints on the thickness of the clouds and on their orientation on the sky (both these effects are not included in the error estimate quoted above). For Ophiuchus, we find some evidence that the streamers are closer to us than the core. The method applied in this paper is currently limited to nearby molecular clouds, but it will find many natural applications in the GAIA-era, when it will be possible to pin down the distance and three-dimensional structure of virtually every molecular cloud in the Galaxy.
We combined sensitive near-infrared data obtained with ground-based imagers on the ESO NTT and VLT telescopes with space mid-infrared data acquired with the IRAC imager on the Spitzer Space Telescope to calculate the extinction law A_lambda/A_K as a function of lambda between 1.25 and 7.76 micron to an unprecedented depth in Barnard 59, a star forming, dense core located in the Pipe Nebula. The ratios A_lambda/A_K were calculated from the slopes of the distributions of sources in color-color diagrams lambda-K vs. H-K. The distributions in the color-color diagrams are fit well with single slopes to extinction levels of A_K ~ 7 (A_V ~ 59 mag). Consequently, there appears to be no significant variation of the extinction law with depth through the B59 line of sight. However, when slopes are translated into the relative extinction coefficients A_lambda/A_K, we find an extinction law which departs from the simple extrapolation of the near-infrared power law extinction curve, and agrees more closely with a dust extinction model for a cloud with a total to selective absorption R_V=5.5 and a grain size distribution favoring larger grains than those in the diffuse ISM. Thus, the difference we observe could be possibly due to the effect of grain growth in denser regions. Finally, the slopes in our diagrams are somewhat less steep than those from the study of Indebetouw et al. (2005) for clouds with lower column densities, and this indicates that the extinction law between 3 and 8 micron might vary slightly as a function of environment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا