ترغب بنشر مسار تعليمي؟ اضغط هنا

The lunar Cherenkov technique is a method to use radio-telescopes to detect ultra-high energy cosmic rays (CR) and neutrinos ($ u$). By observing the short-duration ($sim$few nanosecond) pulses of coherent Cherenkov radiation emitted from particle ca scades via the Askaryan Effect in the Moons outer layers (nominally the regolith), the primary particles initiating the cascades may be identified. Our collaboration (LUNASKA) aims to develop the technique to be used with the next generation of giant radio-arrays. Here, we present the results of our two preliminary UHE particle searches using this technique with three antennas at the Australia Telescope Compact Array (ATCA) during February and May 2008.
This contribution describes the experimental set-up implemented by the LUNASKA project at the Australia Telescope Compact Array (ATCA) to enable the radio-telescope to be used to search for pulses of coherent Cherenkov radiation from UHE particle int eractions in the Moon with an unprecedented bandwidth, and hence sensitivity. Our specialised hardware included analogue de-dispersion filters to coherently correct for the dispersion expected of a ~nanosecond pulse in the Earths ionosphere over our wide (600 MHz) bandwidth, and FPGA-based digitising boards running at 2.048 GHz for pulse detection. The trigger algorithm is described, as are the methods used discriminate between terrestrial RFI and true lunar pulses. We also outline the next stage of hardware development expected to be used in our 2010 observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا