ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfv{e}n speed is 85 km s$^{-1}$, the proton $beta = 0.08$ and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s$^{-1}$ but weak with a median Alfv{e}nic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s$^{-1}$, a plasma $beta$ of 0.02, upstream solar wind speed of 740 km s$^{-1}$ and density of 0.5 cm$^{-3}$. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under $-100$ nT) within 12 hours of the shock detection at Wind, and fifteen were associated with a drop of the storm-time Dst index of more than 50 nT between 3 and 9 hours after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low $beta$ regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.
184 - N. Lugaz 2013
We report on a numerical investigation of two coronal mass ejections (CMEs) which interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulatio ns with the axis of the second CME rotated by 90 degrees from one simulation to the next. Each magneto-hydrodynamic (MHD) simulation is performed in three dimensions (3-D) with the Space Weather Modeling Framework (SWMF) in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field (IMF) determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180 degrees. Due to reconnection, the second CME only appears as an extended tail, and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا