ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the successful imaging of flux vortices in single crystal MgB2 using transmission electron microscopy. The specimen was thinned to electron transparency (350 nm thickness) by focussed ion beam milling. An artefact of the thinning process wa s the production of longitudinal thickness undulations of height 1-2 nm in the sample which acted as pinning sites due to the energy required for the vortices to cross them. These had a profound effect on the patterns of vortex order observed which we examine here. Supplementary information can be downloaded from http://www-hrem.msm.cam.ac.uk/people/loudon/#publications
The state of the vortex lattice extremely close to the superconducting to normal transition in an applied magnetic field is investigated in high purity niobium. We observe that thermal fluctuations of the order parameter broaden the superconducting t o normal transition into a crossover but no sign of a first order vortex lattice melting transition is detected in measurements of the heat capacity or the small angle neutron scattering (SANS) intensity. Direct observation of the vortices via SANS always finds a well ordered vortex lattice. The fluctuation broadening is considered in terms of the Lowest Landau Level theory of critical fluctuations and scaling is found to occur over a large H_{c2}(T) range.
Understanding the mechanism and symmetry of electron pairing in iron-based superconductors represents an important challenge in condensed matter physics [1-3]. The observation of magnetic flux lines - vortices - in a superconductor can contribute to this issue, because the spatial variation of magnetic field reflects the pairing. Unlike many other iron pnictides, our KFe2As2 crystals have very weak vortex pinning, allowing small-angle-neutron-scattering (SANS) observations of the intrinsic vortex lattice (VL). We observe nearly isotropic hexagonal packing of vortices, without VL-symmetry transitions up to high fields along the fourfold c-axis of the crystals, indicating rather small anisotropy of the superconducting properties around this axis. This rules out gap nodes parallel to the c-axis, and thus d-wave and also anisotropic s-wave pairing [2, 3]. The strong temperature-dependence of the intensity down to T<<Tc indicates either widely different full gaps on different Fermi surface sheets, or nodal lines perpendicular to the axis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا