ترغب بنشر مسار تعليمي؟ اضغط هنا

A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 sq deg of multicolour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i band to a depth i(AB)<24.7, for galaxies with signal-to-noise ratio greater than about 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disk plus bulge) models, to measure the ellipticity of each galaxy, with bayesian marginalisation over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created, to establish the methods accuracy and to derive an empirical correction for the effects of noise bias.
We present weak lensing data from the HST/STAGES survey to study the three-dimensional spatial distribution of matter and galaxies in the Abell 901/902 supercluster complex. Our method improves over the existing 3D lensing mapping techniques by calib rating and removing redshift bias and accounting for the effects of the radial elongation of 3D structures. We also include the first detailed noise analysis of a 3D lensing map, showing that even with deep HST quality data, only the most massive structures, for example M200>~10^15 Msun/h at z~0.8, can be resolved in 3D with any reasonable redshift accuracy (Delta z~0.15). We compare the lensing map to the stellar mass distribution and find luminous counterparts for all mass peaks detected with a peak significance >3sigma. We see structures in and behind the z=0.165 foreground supercluster, finding structure directly behind the A901b cluster at z~0.6 and also behind the SW group at z~0.7. This 3D structure viewed in projection has no significant impact on recent mass estimates of A901b or the SW group components SWa and SWb.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا