ترغب بنشر مسار تعليمي؟ اضغط هنا

Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular-polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphenes linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.
We report measurements of the de Haas-van Alphen effect in CeIn3 in magnetic fields extending to ~90 T, well above the Neel critical field of Hc ~61 T. The unreconstructed Fermi surface a-sheet is observed in the high magnetic field polarized paramag netic limit, but with its effective mass and Fermi surface volume strongly reduced in size compared to that observed in the low magnetic field paramagnetic regime under pressure. The spheroidal topology of this sheet provides an ideal realization of the transformation from a `large Fermi surface accommodating f-electrons to a `small Fermi surface when the f-electron moments become polarized.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا