ترغب بنشر مسار تعليمي؟ اضغط هنا

We study I-V characteristics of an all-II-VI semiconductor resonant tunneling diode with dilute magnetic impurities in the quantum well layer. Bound magnetic polaron states form in the vicinity of potential fluctuations at the well interface while tu nneling electrons traverse these interface quantum dots. The resulting microscopic magnetic order lifts the degeneracy of the resonant tunneling states. Although there is no macroscopic magnetization, the resulting resonant tunneling current is highly spin polarized at zero magnetic field due to the zero field splitting. Detailed modeling demonstrates that the local spin polarization efficiency exceeds 90% without an external magnetic field.
We report on the observation of Fermi edge enhanced resonant tunneling transport in a II-VI semiconductor heterostructure. The resonant transport through a self assembled CdSe quantum dot survives up to 45 K and probes a disordered two dimensional (2 D) like emitter which dominates the magnetic field dependence of the transport. An enhancement of the tunnel current through many particle effects is clearly observable, even without an applied magnetic field. Additional fine structure in the tunneling current suggests that while conventional Fermi edge singularity theory successfull reproduces the general features of the increased transmission, it is not adequate to describe all details of the current enhancement.
64 - S. Mark , C. Gould , K. Pappert 2008
We report the discovery of an effect where two ferromagnetic materials, one semiconductor ((Ga,Mn)As) and one metal (permalloy), can be directly deposited on each other and still switch their magnetization independently. We use this independent magne tization behavior to create various resistance states dependent on the magnetization direction of the individual layers. At zero magnetic field a two layer device can reach up to four non-volatile resistance states.
194 - K. Pappert , C. Gould , M. Sawicki 2008
This paper discusses transport methods for the investigation of the (Ga,Mn)As magnetic anisotropy. Typical magnetoresistance behaviour for different anisotropy types is discussed, focusing on an in depth discussion of the anisotropy fingerprint techn ique and extending it to layers with primarily uniaxial magnetic anisotropy. We find that in all (Ga,Mn)As films studied, three anisotropy components are always present. The primary biaxial along ([100] and [010]) along with both uniaxial components along the [110] and [010] crystal directions which are often reported separately. Various fingerprints of typical (Ga,Mn)As transport samples at 4 K are included to illustrate the variation of the relative strength of these anisotropy terms. We further investigate the temperature dependence of the magnetic anisotropy and the domain wall nucleation energy with the help of the fingerprint method.
199 - C. Gould , S. Mark , K. Pappert 2008
This paper reports on a detailed magnetotransport investigation of the magnetic anisotropies of (Ga,Mn)As layers produced by various sources worldwide. Using anisotropy fingerprints to identify contributions of the various higher order anisotropy ter ms, we show that the presence of both a [100] and a [110] uniaxial anisotropy in addition to the primary ([100] + [010]) anisotropy is common to all medium doped (Ga,Mn)As layers typically used in transport measurement, with the amplitude of these uniaxial terms being characteristic of the individual layers.
A numerical technique is developed to solve the Luttinger-Kohn equation for impurity states directly in k-space and is applied to calculate bound hole wave functions in a ferromagnetic (Ga,Mn)As host. The rich properties of the band structure of an a rbitrarily strained, ferromagnetic zinc-blende semiconductor yields various features which have direct impact on the detailed shape of a valence band hole bound to an active impurity. The role of strain is discussed on the basis of explicit calculations of bound hole states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا