ترغب بنشر مسار تعليمي؟ اضغط هنا

The electron energy-loss function of graphite is studied for momentum transfers q beyond the first Brillouin zone. We find that near Bragg reflections the spectra can change drastically for very small variations in q. The effect is investigated by me ans of first principle calculations in the random phase approximation and confirmed by inelastic x-ray scattering measurements of the dynamic structure factor S(q,omega). We demonstrate that this effect is governed by crystal local field effects and the stacking of graphite. It is traced back to a strong coupling between excitations at small and large momentum transfers.
We have measured a strictly linear pi-plasmon dispersion along the axis of individualized single wall carbon nanotubes, which is completely different from plasmon dispersions of graphite or bundled single wall carbon nanotubes. Comparative ab initio studies on graphene based systems allow us to reproduce the different dispersions. This suggests that individualized nanotubes provide viable experimental access to collective electronic excitations of graphene, and it validates the use of graphene to understand electronic excitations of carbon nanotubes. In particular, the calculations reveal that local field effects (LFE) cause a mixing of electronic transitions, including the Dirac cone, resulting in the observed linear dispersion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا