ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to attain a statistical description of the evolution of cosmic density fluctuations in agreement with results from the numerical simulations, we introduce a probability conditional formalism (CF) based on an inventory of isolated overdense r egions in a density random field. This formalism is a useful tool for describing at the same time the mass function (MF) of dark haloes, their mass aggregation histories (MAHs) and merging rates (MRs). The CF focuses on virialized regions in a self-consistent way rather than in mass elements, and it offers an economical description for a variety of random fields. Within the framework of the CF, we confirm that, for a Gaussian field, it is not possible to reproduce at the same time the MF, MAH, and MR of haloes, both for a constant and moving barrier. Then, we develop an inductive method for constraining the cumulative conditional probability from a given halo MF description, and thus, using the CF, we calculate the halo MAHs and MRs. By applying this method to the MF measured in numerical simulations by Tinker et al. 2008, we find that a reasonable solution, justified by a mass conservation argument, is obtained if ones introduce a rescaling -increment by ~30% - of the virial mass used in simulations and a (slight) deviation from Gaussianity. Thus, both the MAH and MR obtained by a Monte Carlo merger tree agree now with the predictions of numerical simulations. We discuss on the necessity of rescaling the virial mass in simulations when comparing with analytical approaches on the ground of the matter not accounted as part of the halos and the halo mass limit due to numerical. Our analysis supports the presence of a diffuse dark matter component that is not taken into account in the measured halo MFs inasmuch as it is not part of the collapsed structures.
The emerging empirical picture of galaxy stellar mass (Ms) assembly shows that galaxy population buildup proceeds from top to down in Ms. By connecting galaxies to LCDM halos and their histories, individual (average) Ms growth tracks can be inferred. These tracks show that massive galaxies assembled their Ms the earlier the more massive the halo, and that less massive galaxies are yet actively growing in Ms, the more active the less massive is the halo. The predicted star formation rates as a function of mass and the downsizing of the typical mass that separate active galaxies from the passive ones agree with direct observational determinations. This implies that the LCDM scenario is consistent with these observations. The challenge is now to understand the baryonic physics that drives the significant and systematical shift of the stellar mass assembly of galaxies from the mass assembly of their corresponding halos (from halo upsizing to galaxy downsizing).
By means of the abundance matching technique, we infer the local stellar and baryonic mass-halo mass (Ms-Mh and Mb-Mh) relation for central blue and red galaxies separately in the mass range Ms~10^8.5-10^12.0 Msun. The observational inputs are the SD SS central blue and red Galaxy Stellar Mass Functions reported in Yang et al. 2009, and the measured local gas mass-Ms relations for blue and red galaxies. For the Halo Mass Function associated to central blue galaxies, the distinct LCDM one is used and set up to exclude: (i) the observed group/cluster mass function (blue galaxies are rare as centers of groups/clusters), and (ii) halos with a central major merger at resdshifts z<0.8 (dry late major mergers destroy the disks of blue galaxies). For red galaxies, we take the complement of this function to the total. The obtained mean Ms-Mh and Mb-Mh relations of central blue and red galaxies do not differ significantly from the respective relations for all central galaxies. For Mh>10^11.5 Msun, the Mss of red galaxies tend to be higher than those of blue ones for a given Mh, the difference not being larger than 1.7. For Mh<10^11.5 Msun, this trend is inverted. For blue (red) galaxies: (a) the maximum value of fs=Ms/Mh is 0.021^{+0.016}_{-0.009} (0.034{+0.026}_{-0.015}) and it is attained atlog(Mh/Msun)~12.0 (log(Mh/Msun)~11.9); (b) fspropto Mh (fspropto Mh^3) at the low-mass end while at the high-mass end, fspropto Mh^-0.4 (fspropto Mh^-0.6). The baryon mass fractions, fb=Mb/Mh, of blue and red galaxies reach maximum values of fb=0.028^{+0.018}_{-0.011} and fb=0.034^{+0.025}_{-0.014}, respectively. For Mh<10^11.3 Msun, a much steeper dependence of fb on Mh is obtained for the red galaxies than for the blue ones. We discuss on the differences found in the fs-Mh and fb-Mh relations between blue and red galaxies in the light of of semi-empirical galaxy models.
248 - C. Firmani 2008
For a sample of long GRBs with known redshift, we study the distribution of the evolutionary tracks on the rest-frame luminosity-peak energy Liso-Ep diagram. We are interested in exploring the extension of the `Yonetoku correlation to any phase of th e prompt light curve, and in verifying how the high-signal prompt duration time, Tf, in the rest frame correlates with the residuals of such correlation (Firmani et al. 2006). For our purpose, we analyse separately two samples of time-resolved spectra corresponding to 32 GRBs with peak fluxes >1.8 phot cm^-2 s^-1 from the Swift-BAT detector, and 7 bright GRBs from the CGRO-BATSE detector previously processed by Kaneko et al. (2006). After constructing the Liso-Ep diagram, we discuss the relevance of selection effects, finding that they could affect significantly the correlation. However, we find that these effects are much less significant in the Liso x Tf-Ep diagram, where the intrinsic scatter reduces significantly. We apply further corrections for reducing the intrinsic scatter even more. For the sub-samples of GRBs (7 from Swift and 5 from CGRO) with measured jet break time, we analyse the effects of correcting Liso by jet collimation. We find that (i) the scatter around the correlation is reduced, and (ii) this scatter is dominated by the internal scatter of the individual evolutionary tracks. These results suggest that the time, integrated `Amati and `Ghirlanda correlations are consequences of the time resolved features, not of selection effects, and therefore call for a physical origin. We finally remark the relevance of looking inside the nature of the evolutionary tracks.
We explore how the slopes and scatters of the scaling relations of disk galaxies (Vm-L[-M], R-L[-M], and Vm-R) do change when moving from B to K bands and to stellar and baryonic quantities. For our compiled sample of 76 normal, non-interacting high and low surface brightness galaxies, we find some changes, which evidence evolution effects, mainly related to gas infall and star formation (SF). We also explore correlations among the (B-K) color, stellar mass fraction fs, mass M (luminosity L), and surface density (SB), as well as correlations among the residuals of the scaling relations. Some of our findings are: (i) the scale length Rb is a third parameter in the baryonic TF relation and the residuals of this relation follow a trend (slope ~-0.15) with the residuals of the Rb-Mb relation; for the stellar and K band cases, R is not anymore a third parameter and the mentioned trend disappears; (ii) among the TFRs, the B-band TFR is the most scattered; in this case, the color is a third parameter; (iii) the LSB galaxies break some observed trends, which suggest a threshold in the gas surface density Sg, below which the SF becomes independent of the gas infall rate and Sg. Our results are interpreted and discussed in the light of LCDM-based models of galaxy evolution. The models explain not only the baryonic scaling relations, but also most of the processes responsible for the observed changes in the slopes, scatters, and correlations among the residuals when changing to stellar and luminous quantities. The baryon fraction is required to be smaller than 0.05 on average. We detect some potential difficulties for the models: the observed color-M and surface density-M correlations are steeper, and the intrinsic scatter in the baryonic TFR is smaller than those predicted. [abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا