ترغب بنشر مسار تعليمي؟ اضغط هنا

113 - M. Brusa , C. Feruglio , G. Cresci 2015
Gas outflows are believed to play a pivotal role in shaping galaxies, as they regulate both star formation and black hole growth. Despite their ubiquitous presence, the origin and the acceleration mechanism of such powerful and extended winds is not yet understood. Direct observations of the cold gas component in objects with detected outflows at other wavelengths are needed to assess the impact of the outflow on the host galaxy interstellar medium (ISM). We observed with the Plateau de Bure Interferometer an obscured quasar at z~1.5, XID2028, for which the presence of an ionised outflow has been unambiguously signalled by NIR spectroscopy. The detection of CO(3-2) emission in this source allows us to infer the molecular gas content and compare it to the ISM mass derived from the dust emission. We then analyze the results in the context of recent insights on scaling relations, which describe the gas content of the overall population of star-forming galaxies at a similar redshifts. The Star formation efficiency (~100) and gas mass (M_gas=2.1-9.5x10^{10} M_sun) inferred from the CO(3-2) line depend on the underlying assumptions on the excitation of the transition and the CO-to-H2 conversion factor. However, the combination of this information and the ISM mass estimated from the dust mass suggests that the ISM/gas content of XID2028 is significantly lower than expected for its observed M$_star$, sSFR and redshift, based on the most up-to-date calibrations (with gas fraction <20% and depletion time scale <340 Myr). Overall, the constraints we obtain from the far infrared and millimeter data suggest that we are observing QSO feedback able to remove the gas from the host
Understanding the relationship between the formation and evolution of galaxies and their central super massive black holes (SMBH) is one of the main topics in extragalactic astrophysics. Links and feedback may reciprocally affect both black hole and galaxy growth. Observations of the CO line at redshifts of 2-4 are crucial to investigate the gas mass, star formation activity and accretion onto SMBHs, as well as the effect of AGN feedback. Potential correlations between AGN and host galaxy properties can be highlighted by observing extreme objects. Despite their luminosity, hyper-luminous QSOs at z=2-4 are still little studied at mm wavelengths. We targeted CO(3-2) in ULAS J1539+0557, an hyper-luminos QSO (Lbol> 10^48 erg/s) at z=2.658, selected through its unusual red colors in the UKIDSS Large Area Survey (ULAS). We find a molecular gas mass of 4.1+-0.8 10^10 Msun, and a gas fraction of 0.4-0.1, depending mostly on the assumed source inclination. We also find a robust lower limit to the star-formation rate (SFR=250-1600 Msun/yr) and star-formation efficiency (SFE=25-350 Lsun/(K km s-1 pc2) by comparing the observed optical-near-infrared spectral energy distribution with AGN and galaxy templates. The black hole gas consumption timescale, M(H_2)/dM(accretion)/dt, is ~160 Myr, similar or higher than the gas consumption timescale. The gas content and the star formation efficiency are similar to those of other high-luminosity, highly obscured QSOs, and at the lower end of the star-formation efficiency of unobscured QSOs, in line with predictions from AGN-galaxy co-evolutionary scenarios. Further measurements of the (sub)-mm continuum in this and similar sources are mandatory to obtain a robust observational picture of the AGN evolutionary sequence.
Stellar archeology shows that massive elliptical galaxies today formed rapidly about ten billion years ago with star formation rates above several hundreds solar masses per year (M_sun/yr). Their progenitors are likely the sub-millimeter-bright galax ies (SMGs) at redshifts (z) greater than 2. While SMGs mean molecular gas mass of 5x10^10 M_sun can explain the formation of typical elliptical galaxies, it is inadequate to form ellipticals that already have stellar masses above 2x10^11 M_sun at z ~ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive SMGs at z = 2.3. The system is currently forming stars at a tremendous rate of 2,000 M_sun/yr. With a star formation efficiency an order-of-magnitude greater than that of normal galaxies, it will quench the star formation by exhausting the gas reservoir in only ~200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of ~4x10^11 M_sun. Our observations show that gas-rich major galaxy mergers, concurrent with intense star formation, can form the most massive elliptical galaxies by z ~ 1.5.
We present a catalog of optical spectroscopic identifications of sources detected by Spitzer at 3.6 or 24 micron down to 10 and 280 microJy, respectively, in the SWIRE/XMM-Newton/ELAIS-S1 field and classified via line width analysis and diagnostic di agrams. A total of 1376 sources down to R~24.2 mag have been identified (1362 detected at 3.6 micron, 419 at 24 micron, and 405 at both) by low-resolution optical spectroscopy carried out with FORS2, VIMOS, and EFOSC2 at the Very Large Telescope and 3.6m ESO telescopes. The spectroscopic campaigns have been carried out over the central 0.6 square degrees area of ELAIS-S1 which, in particular, has also been observed by XMM-Newton and Chandra. We find the first direct optical spectroscopic evidence that the fraction of active galactic nuclei (AGN; mostly AGN2) increases with increasing F(24 micron)/F(R) ratio, reaching values of 70(+/-20)% in the range 316<F(24 micron)F(R)<1000. We present an IRAC-MIPS color-color diagram able to separate AGN1 from obscured AGN2 candidates. After having corrected for the spectroscopic incompleteness of our sample, it results that the AGN fraction at F(24 micron)=0.8 mJy is ~22(+/-7)% and decreases slowly to ~19(+/-5)% down to F(24 micron)=0.3 mJy.
We present optical identifications and a multi-band catalogue of a sample of 478 X-ray sources in the XMM and Chandra surveys of the central 0.6 deg^2 of the ELAIS-S1 field. The optical/infrared counterpart of each X-ray source was identified using R and IRAC 3.6 um bands. This method was complemented by the precise positions obtained through Chandra observations. Approximately 94% of the counterparts are detected in the R band, while the remaining are blank fields in the optical down to R~24.5, but have a near-infrared counterpart detected by IRAC within 6 arcsec from the XMM centroid. The multi-band catalogue contains photometry in ten photometric bands (B to the MIPS 24 um). We determined redshift and classification for 237 sources (~50% of the sample) brighter than R=24. We classified 47% of the sources with spectroscopic redshift as broad-line active galactic nuclei (BL AGNs) with z=0.1-3.5, while sources without broad-lines are about 46% of the spectroscopic sample and are found up to z=2.6. We identified 11 type 2 QSOs among the sources with X/O>8, with z=0.9-2.6, high 2-10 keV luminosity (log(L2-10keV)>=43.8 erg/s) and hard X-ray colors suggesting large absorbing columns at the rest frame (logN_H up to 23.6 cm^-2). BL AGNs show on average blue optical-to-near-infrared colors, softer X-ray colors and X-ray-to-optical colors typical of optically selected AGNs. Conversely, narrow-line sources show redder optical colors, harder X-ray flux ratio and span a wider range of X-ray-to-optical colors. On average the SEDs of high-luminosity BL AGNs resemble the power-law typical of unobscured AGNs. The SEDs of NOT BL AGNs are dominated by the galaxy emission in the optical/near-infrared, and show a rise in the mid-infrared which suggests the presence of an obscured active nucleus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا