ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation of nano-hillocks on CaF2 crystal surfaces by individual ion impact has been studied using medium energy (3 and 5 MeV) highly charged ions (Xe19+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy ions. For very sl ow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy while for swift heavy ions a minimum electronic energy loss is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via electronic energy loss the potential energy threshold for hillock production can be substantially lowered. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, as demonstrated when plotting the results in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to case where kinetic and potential energies are deposited into the surface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا