ترغب بنشر مسار تعليمي؟ اضغط هنا

Herbig Ae/Be stars are intermediate-mass pre-main sequence stars surrounded by circumstellar dust disks. Some are observed to produce jets, whose appearance as a sequence of shock fronts (knots) suggests a past episodic outflow variability. This jet fossil record can be used to reconstruct the outflow history. We present the first optical to near-infrared (NIR) VLT/X-shooter spectra of the jet from the Herbig Ae star HD 163296. We determine physical conditions in the knots, as well as their kinematic launch epochs. Knots are formed simultaneously on either side of the disk, with a regular interval of ~16 yr. The velocity dispersion versus jet velocity and the energy input are comparable in both lobes. However, the mass loss rate, velocity, and shock conditions are asymmetric. We find Mjet/Macc ~ 0.01-0.1, consistent with magneto-centrifugal jet launching models. No evidence for dust is found in the high-velocity jet, suggesting it is launched within the sublimation radius (<0.5 au). The jet inclination measured from proper motions and radial velocities confirms it is perpendicular to the disk. A tentative relation is found between the structure of the jet and the photometric variability of the source. Episodes of NIR brightening were previously detected and attributed to a dusty disk wind. We report for the first time significant optical fadings lasting from a few days up to a year, coinciding with the NIR brightenings. These are likely caused by dust lifted high above the disk plane; this supports the disk wind scenario. The disk wind is launched at a larger radius than the high-velocity atomic jet, although their outflow variability may have a common origin. No significant relation between outflow and accretion variability could be established. Our findings confirm that this source undergoes periodic ejection events, which may be coupled with dust ejections above the disk plane.
Accretion is a fundamental process in star formation. Although the time evolution of accretion remains a matter of debate, observations and modelling studies suggest that episodic outbursts of strong accretion may dominate the formation of the protos tar. Observing young stellar objects during these elevated accretion states is crucial to understanding the origin of unsteady accretion. ZCMa is a pre-main-sequence binary system composed of an embedded Herbig Be star, undergoing photometric outbursts, and a FU Orionis star. The Herbig Be component recently underwent its largest optical photometric outburst detected so far. We aim to constrain the origin of this outburst by studying the emission region of the HI Brackett gamma line, a powerful tracer of accretion/ejection processes on the AU-scale in young stars. Using the AMBER/VLTI instrument at spectral resolutions of 1500 and 12 000, we performed spatially and spectrally resolved interferometric observations of the hot gas emitting across the Brackett gamma emission line, during and after the outburst. From the visibilities and differential phases, we derive characteristic sizes for the Brackett gamma emission and spectro-astrometric measurements across the line, with respect to the continuum. We find that the line profile, the astrometric signal, and the visibilities are inconsistent with the signature of either a Keplerian disk or infall of matter. They are, instead, evidence of a bipolar wind, maybe partly seen through a disk hole inside the dust sublimation radius. The disappearance of the Brackett gamma emission line after the outburst suggests that the outburst is related to a period of strong mass loss rather than a change of the extinction along the line of sight. Based on these conclusions, we speculate that the origin of the outburst is an event of enhanced mass accretion, similar to those occuring in EX Ors and FU Ors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا