ترغب بنشر مسار تعليمي؟ اضغط هنا

134 - D.A. Sanchez , C. Deil 2013
With the advent of the Large Array Telescope (LAT) on board the Fermi satellite, a new window on the Universe has been opened. Publicly available, the Fermi-LAT data come together with an analysis software named ScienceTools (ST, http://fermi.gsfc.na sa.gov/ssc/data/analysis/software/) which can be run through a Python interface. Nevertheless, for the user, the ST can be hard to run and imply several steps. Users already contributed with scripts for a specific task but no tool allowing a complete analysis is currently available. We present a Python package called {tt Enrico}, designed to facilitate the data analysis. Using only configuration files and front end tools from the command line, the user can easily perform/reproduce an entire Fermi analysis and make plots for publications. It also include new features like debug plots, pipeline execution on one or several CPUs, downloading of the Fermi data or the generation of a sky model from the Fermi catalogue. {tt Enrico} is an open-source project currently available for download at url{https://github.com/gammapy/enrico}
65 - C. Deil 2008
The large optical reflector (~ 100 m^2) of a H.E.S.S. Cherenkov telescope was used to search for very fast optical transients of astrophysical origin. 43 hours of observations targeting stellar-mass black holes and neutron stars were obtained using a dedicated photometer with microsecond time resolution. The photometer consists of seven photomultiplier tube pixels: a central one to monitor the target and a surrounding ring of six pixels to veto background events. The light curves of all pixels were recorded continuously and were searched offline with a matched-filtering technique for flares with a duration of 2 us to 100 ms. As expected, many unresolved (<3 us) and many long (>500 us) background events originating in the earths atmosphere were detected. In the time range 3 to 500 us the measurement is essentially background-free, with only eight events detected in 43 h; five from lightning and three presumably from a piece of space debris. The detection of flashes of brightness ~ 0.1 Jy and only 20 us duration from the space debris shows the potential of this setup to find rare optical flares on timescales of tens of microseconds. This timescale corresponds to the light crossing time of stellar-mass black holes and neutron stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا