ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - F. Li , C. Chong , J. Yang 2014
We present a dynamically tunable mechanism of wave transmission in 1D helicoidal phononic crystals in a shape similar to DNA structures. These helicoidal architectures allow slanted nonlinear contact among cylin- drical constituents, and the relative torsional movements can dynamically tune the contact stiffness between neighboring cylinders. This results in cross-talking between in-plane torsional and out-of-plane longitudinal waves. We numerically demonstrate their versatile wave mixing and controllable dispersion behavior in both wavenumber and frequency domains. Based on this principle, a suggestion towards an acoustic configuration bearing parallels to a transistor is further proposed, in which longitudinal waves can be switched on/off through torsional waves.
154 - C. Chong , F. Li , J. Yang 2013
By applying an out-of-phase actuation at the boundaries of a uniform chain of granular particles, we demonstrate experimentally that time-periodic and spatially localized structures with a nonzero background (so-called dark breathers) emerge for a wi de range of parameter values and initial conditions. Importantly, the number of ensuing breathers within the multibreather pattern produced can be dialed in by varying the frequency or amplitude of the actuation. The values of the frequency (resp. amplitude) where the transition between different multibreather states occurs are predicted accurately by the proposed theoretical model, which is numerically shown to support exact dark breather solutions. The existence, linear stability, and bifurcation structure of the theoretical dark breathers are also studied in detail. Moreover, the distributed sensing technologies developed herein enable a detailed space-time probing of the system and a systematic favorable comparison between theory, computation and experiments.
We describe the dynamic response of a two-dimensional hexagonal packing of uncompressed stainless steel spheres excited by localized impulsive loadings. After the initial impact strikes the system, a characteristic wave structure emerges and continuo usly decays as it propagates through the lattice. Using an extension of the binary collision approximation (BCA) for one-dimensional chains, we predict its decay rate, which compares well with numerical simulations and experimental data. While the hexagonal lattice does not support constant speed traveling waves, we provide scaling relations that characterize the power law decay of the wave velocity. Lastly, we discuss the effects of weak disorder on the directional amplitude decay rates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا