ترغب بنشر مسار تعليمي؟ اضغط هنا

52 - P. Richard , C. Capan , J. Ma 2013
We used angle-resolved photoemission spectroscopy to investigate the electronic structure of EuFe$_2$As$_2$, EuFe$_2$As$_{1.4}$P$_{0.6}$ and EuFe$_2$P$_2$. We observed doubled core level peaks associated to the pnictide atoms, which are related to a surface state. Nevertheless, strong electronic dispersion along the $c$ axis, especially pronounced in EuFe$_2$P$_2$, is observed for at less one band, thus indicated that the Fe states, albeit probably affected at the surface, do not form pure two-dimensional surface states. However, this latter material shows reduced spectral weight near the Fermi level as compared to EuFe$_2$As$_2$ and EuFe$_2$As$_{1.4}$P$_{0.6}$. An anomalous jump is also found in the electronic states associated with the Eu$^{2+}$ $f$ states in EuFe$_2$P$_2$.
157 - N. Berry , E. M. Bittar , C. Capan 2010
We have investigated the effect of Cd substitution on the archetypal heavy fermion antiferromagnet CeIn$_3$ via magnetic susceptibility, specific heat and resistivity measurements. The suppression of the Neel temperature, T$_{N}$, with Cd doping is m ore pronounced than with Sn. Nevertheless, a doping induced quantum critical point does not appear to be achievable in this system. The magnetic entropy at $T_N$ and the temperature of the maximum in resistivity are also systematically suppressed with Cd, while the effective moment and the Curie-Weiss temperature in the paramagnetic state are not affected. These results suggest that Cd locally disrupts the AFM order on its neighboring Ce moments, without affecting the valence of Ce. Moreover, the temperature dependence of the specific heat below $T_N$ is not consistent with 3D magnons in pure as well as in Cd-doped CeIn$_3$, a point that has been missed in previous investigations of CeIn$_3$ and that has bearing on the type of quantum criticality in this system.
216 - C. Capan , Y-J. Jo , L. Balicas 2010
We report the results of de-Haas-van-Alphen (dHvA) measurements in Cd doped CeCoIn$_5$ and LaCoIn$_5$. Cd doping is known to induce an antiferromagnetic order in the heavy fermion superconductor CeCoIn$_5$, whose effect can be reversed with applied p ressure. We find a slight but systematic change of the dHvA frequencies with Cd doping in both compounds, reflecting the chemical potential shift due to the addition of holes. The frequencies and effective masses are close to those found in the nominally pure compounds with similar changes apparent in the Ce and La compounds with Cd substitution. We observe no abrupt changes to the Fermi surface in the high field paramagnetic state for $x sim x_c$ corresponding to the onset of antiferromagnetic ordering at H=0 in CeCo(In$_{1-x}$Cd$_x$)$_5$. Our results rule out $f-$electron localization as the mechanism for the tuning of the ground state in CeCoIn$_5$ with Cd doping.
152 - C. Capan , G. Seyfarth , D. Hurt 2009
We have investigated the effect of Yb substitution on the Pauli limited, heavy fermion superconductor, CeCoIn$_5$. Yb acts as a non-magnetic divalent substituent for Ce throughout the entire doping range, equivalent to hole doping on the rare earth s ite. We found that the upper critical field in (Ce,Yb)CoIn$_5$ is Pauli limited, yet the reduced (H,T) phase diagram is insensitive to disorder, as expected in the purely orbitally limited case. We use the Pauli limiting field, the superconducting condensation energy and the electronic specific heat coefficient to determine the Wilson ratio ($R_{W}$), the ratio of the specific heat coefficient to the Pauli susceptibility in CeCoIn$_5$. The method is applicable to any Pauli limited superconductor in the clean limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا