ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery that the interface between two band gap insulators LaAlO3 and SrTiO3 is highly conducting has raised an enormous interest in the field of oxide electronics. The LAlO3/SrTiO3 interface can be tuned using an electric field and switched fr om a superconducting to an insulating state. Conducting paths in an insulating background can be written applying a voltage with the tip of an atomic force microscope, creating great promise for the development of a new generation of nanoscale electronic devices. However, the mechanism for interface conductivity in LaAlO3/SrTiO3 has remained elusive. The theoretical explanation based on an intrinsic charge transfer (electronic reconstruction) has been strongly challenged by alternative descriptions based on point defects. In this work, thanks to modern aberration-corrected electron probes with atomic-scale spatial resolution, interfacial charge and atomic displacements originating the electric field within the system can be simultaneously measured, yielding unprecedented experimental evidence in favor of an intrinsic electronic reconstruction.
We report on the in-plane magnetic field (H) dependence of the critical current density (Jc) in meandered and planar single grain boundaries (GBs) isolated in YBa2Cu3O7-d (YBCO) coated conductors. The Jc(H)properties of the planar GB are consistent w ith those previously seen in single GBs of YBCO films grown on SrTiO3 bi-crystals. In the straight boundary a characteristic flux channeling regime when H is oriented near the GB plane, associated with a reduced Jc, is seen. The meandered GB does not show vortex channeling since it is not possible for a sufficient length of vortex line to lie within it.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا