ترغب بنشر مسار تعليمي؟ اضغط هنا

We present initial results of a deep near-IR spectroscopic survey covering the 15 fields of the Keck Baryonic Structure Survey (KBSS) using MOSFIRE on the Keck 1 telescope, focusing on a sample of 251 galaxies with redshifts 2.0< z < 2.6, star-format ion rates 2 < SFR < 200 M_sun/yr, and stellar masses 8.6 < log(M*/M_sun) < 11.4, with high-quality spectra in both H- and K-band atmospheric windows. We show unambiguously that the locus of z~2.3 galaxies in the BPT nebular diagnostic diagram exhibits a disjoint, yet similarly tight, relationship between the ratios [NII]6585/Halpha and [OIII]/Hbeta as compared to local galaxies. Using photoionization models, we argue that the offset of the z~2.3 locus relative to z~ 0 is explained by a combination of harder ionizing radiation field, higher ionization parameter, and higher N/O at a given O/H than applies to most local galaxies, and that the position of a galaxy along the z~2.3 star-forming BPT locus is surprisingly insensitive to gas-phase oxygen abundance. The observed nebular emission line ratios are most easily reproduced by models in which the net ionizing radiation field resembles a blackbody with effective temperature T_eff = 50000-60000 K and N/O close to the solar value at all O/H. We critically assess the applicability of commonly-used strong line indices for estimating gas-phase metallicities, and consider the implications of the small intrinsic scatter in the empirical relationship between excitation-sensitive line indices and stellar mass (i.e., the mass-metallicity relation), at z~2.3.
We present the results of an ultradeep, narrowband imaging survey for Lyman-continuum (LyC) emission at z~3 in the SSA22a field. We employ a custom narrowband filter centered at 3640A (NB3640), which probes the LyC region for galaxies at z>3.06. We a lso analyze new and archival NB4980 imaging tuned to the wavelength of the Lya emission line at z=3.09, and archival broadband B, V, and R images of the non-ionizing UV continuum. Our NB3640 images contain 26 z>3.06 Lyman Break Galaxies (LBGs) as well as a set of 130 Lya emitters (LAEs), identified by their excess NB4980 flux relative to the BV continuum. Six LBGs and 28 LAEs are detected in the NB3640 image. LBGs appear to span a range of NB3640-R colors, while LAEs appear bimodal in their NB3640-R properties. We estimate average UV to LyC flux density ratios, corrected for foreground contamination and intergalactic medium absorption, finding <F_{UV}/F_{LyC}>^{LBG} = 11.3^{+10.3}_{-5.4}, which implies a LBG LyC escape fraction f_{esc}^{LyC} ~ 0.1, and <F_{UV}/F_{LyC}>^{LAE} = 2.2^{+0.9}_{-0.6}. The strikingly blue LAE flux density ratios defy interpretation in terms of standard stellar population models. Assuming <F_{UV}/F_{LyC}>^{LBG} applies down to L=0.1L*, we estimate a galaxy contribution to the intergalactic hydrogen ionization rate that is consistent with independent estimates based on the Lya forest opacity at z~3. If we assume that <F_{UV}/F_{LyC}>^{LAE} holds at the faintest luminosities, the galaxy contribution significantly exceeds that inferred from the Lya forest. Further follow-up study of these faint LAEs is crucial, given the potentially important contribution similar objects make to the process of reionization. (Abridged)
We present new results on the kinematics and spatial distribution of metal-enriched gas within 125 kpc (physical) of Lyman Break galaxies at redshifts z~2-3. In particular, we demonstrate how rest-UV galaxy spectra can be used to obtain key spatial a nd spectral information more efficiently than possible with QSO sightlines. After recalibrating the measurement of galaxy systemic redshifts from their UV spectra, we investigate the kinematics of galaxy-scale outflows via the strong interstellar (IS) absorption and Lya emission lines (when present), as well as their dependence on other physical properties of the galaxies. We construct a sample of 512 close (1-15 arcsec) angular pairs of z~2-3 LBGs in which the spectra background galaxies probe the circumgalactic gas surrrounding those in the foreground. The close pairs, together with spectra of the foreground galaxies themselves, sample galactocentric impact parameters b=0-125 kpc (physical) at <z>=2.2. The ensemble provides a spatial map of cool gas as a function of galactocentric distance for a well-characterized population of galaxies. We propose a simple model that simultaneously matches the kinematics, depth, and profile shape of IS absorption and Lya emission lines, as well as the observed variation of absorption line strength (of HI, CII, CIV, SiII, SiIV) versus galactocentric impact parameter. We discuss the results of the observations in the context of cold accretion, in which cool gas accretes via filamentary streams directly onto the central regions of galaxies. At present, we find little observational support for cool infalling material, whereas evidence supporting the large-scale effects of outflows is strong. Reconciling theory and observation on the subject of gas flows into and out of forming galaxies seems necessary.
130 - G. G. Kacprzak 2008
We examine halo gas cross sections and covering fractions, f_c, of intermediate redshift MgII absorption selected galaxies. We computed statistical absorber halo radii, R_x, using current values of dN/dz and Schechter luminosity function parameters, and have compared these values to the distribution of impact parameters and luminosities from a sample of 37 galaxies. For equivalent widths W_r(2796) > 0.3 Ang, we find 43 < R_x < 88 kpc, depending on the lower luminosity cutoff and the slope, beta, of the Holmberg-like luminosity scaling, R propto L^beta. The observed distribution of impact parameters, D, are such that several absorbing galaxies lie at D > R_x and several non-absorbing galaxies lie at D < R_x. We deduced f_c must be less than unity and obtain a mean of <f_c> ~ 0.5 for our sample. Moreover, the data suggest halo radii of MgII absorbing galaxies do not follow a luminosity scaling with beta in the range of 0.2-0.28, if f_c= 1 as previously reported. However, provided f_c~0.5, we find that halo radii can remain consistent with a Holmberg-like luminosity relation with beta ~ 0.2 and R* = R_x/sqrt(f_c)= 110 kpc. No luminosity scaling (beta=0) is also consistent with the observed distribution of impact parameters if f_c < 0.37. The data support a scenario in which gaseous halos are patchy and likely have non-symmetric geometric distributions about the galaxies. We suggest halo gas distributions may not be govern primarily by galaxy mass/luminosity but also by stochastic processes local to the galaxy.
Measuring the response of the intergalactic medium to a blast of ionizing radiation allows one to infer the physical properties of the medium and, in principle, the lifetime and isotropy of the radiating source. The most sensitive such measurements c an be made if the source of radiation is near the line of sight to a bright background QSO. We present results based on deep Keck/HIRES observations of the QSO triplet KP76, KP77 and KP78 at z ~2.5, with separations of 2-3 arcmin on the plane of the sky. Using accurate systemic redshifts of the QSOs from near-IR spectroscopy, we quantify the state of the IGM gas in the proximity regions where the expected ionizing flux from the foreground QSOs exceeds that of the metagalactic background by factors of 10-200, assuming constant and isotropic emission. Based on the unusual ionization properties of the absorption systems with detected HI, CIV, and OVI, we conclude that the gas has been significantly affected by the UV radiation from the nearby QSOs. Aided by observations of the galaxy density near the foreground QSOs, we discuss several effects that may explain why the transverse proximity effect has eluded most previous attempts to detect it. Our observations suggest that the luminosities of KP76 and KP77 have remained comparable to current values over timescales of, respectively, Delta t > 25 Myr and 16 Myr < Delta t < 33 Myr - consistent with typical QSO lifetimes estimated from independent, less-direct methods. There is no evidence that the UV radiation from either QSO was significantly anisotropic during these intervals.
203 - G. G. Kacprzak 2007
We have explored the galaxy disk/extended halo gas kinematic relationship using rotation curves (Keck/ESI) of ten intermediate redshift galaxies which were selected by MgII halo gas absorption observed in quasar spectra. Previous results of six edge- on galaxies, probed along their major axis, suggest that observed halo gas velocities are consistent with extended disk-like halo rotation at galactocentric distances of 25-72 kpc. Using our new sample, we demonstrate that the gas velocities are by and large not consistent with being directly coupled to the galaxy kinematics. Thus, mechanisms other than co-rotation dynamics (i.e., gas inflow, feedback, galaxy-galaxy interactions, etc.) must be invoked to account for the overall observed kinematics of the halo gas. In order to better understand the dynamic interaction of the galaxy/halo/cosmic web environment, we performed similar mock observations of galaxies and gaseous halos in Lambda-CDM cosmological simulations. We discuss an example case of a z=0.92 galaxy with various orientations probing halo gas at a range of positions. The gas dynamics inferred using simulated quasar absorption lines are consistent with observational data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا