ترغب بنشر مسار تعليمي؟ اضغط هنا

We report an investigation of charge, spin and lattice effects in the spin-Peierls state of the organic compound MEM(TCNQ)$_2$. The 16.5 GHz dielectric function along the chain axis shows an enhancement below the spin-Peierls transition temperature n ear 18 K consistent with the charge coupling to the elastic strain involved in the transition. The velocity of two elastic modes perpendicular to the chain axis presents anomalies at the transition which can be explained with a Landau free energy model including a linear-quadratic coupling energy term between the appropriate elastic strain $e$ and the spin-Peierls magnetic gap $Delta_q$. The analysis of the dielectric and elastic features aims toward an order parameter with an associated critical exponent $beta sim$ 0.36, which is similar to the three-dimensional behavior seen in other spin-Peierls materials. All these effects studied in a magnetic field up to 18 Teslas appear also compatible with a mean-field model of a quasi-one-dimensional spin-Peierls system.
We use the renormalization group method to study the normal state of quasi-one-dimensional superconductors nearby a spin-density-wave instability. On the basis of one-loop scattering amplitudes for the quasi-one-dimensional electron gas, the integrat ion of the renormalization group equations for the two-loop single particle Matsubara self-energy leads to a nonFermi-liquid temperature downturn of the momentum-resolved quasi-particle weight over most part of the Fermi surface. The amplitude of the downturn correlates with the entire instability line for superconductivity, defining an extended quantum critical region of the phase diagram as a function of nesting deviations of the Fermi surface. One also extracts the downward renormalization of interchain hopping amplitudes at arbitrary low temperature in the normal phase. By means of analytical continuation of the Matsubara self-energy, one-particle spectral functions are obtained with respect to both energy and temperature and their anomalous features analyzed in connection with the sequence of instability lines of the phase diagram. The quasi-particle scattering rate is found to develop an unusual temperature dependence, which is best described by the superimposition of a linear and quadratic $T$ dependences. The nonFermi-liquid linear-$T$ component correlates with the temperature scale $T_c$ of the superconducting instability over an extended range of nesting deviations, whereas its anisotropy along the Fermi surface is predicted to parallel the momentum profile of a d-wave pairing gap on the Fermi surface. We examine the implications of our results for low dimensional unconventional superconductors, in particular the Bechgaard salts series of quasi-1D organic conductors, but also the pnictide and cuprate superconductors where several common features are observed.
161 - M. Menard , C. Bourbonnais 2010
The phase diagram of the one-dimensional extended Hubbard model at half-filling is investigated by a weak coupling renormalization group method applicable beyond the usual continuum limit for the electron spectrum and coupling constants. We analyze t he influence of irrelevant momentum dependent interactions on asymptotic properties of the correlation functions and the nature of dominant phases for the lattice model under study.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا