ترغب بنشر مسار تعليمي؟ اضغط هنا

The 4MOST Cosmology Redshift Survey (CRS) will perform stringent cosmological tests via spectroscopic clustering measurements that will complement the best lensing, cosmic microwave background and other surveys in the southern hemisphere. The combina tion of carefully selected samples of bright galaxies, luminous red galaxies, emission-line galaxies and quasars, totalling about 8 million objects over the redshift range $z = 0.15$ to $3.5$, will allow definitive tests of gravitational physics. Many key science questions will be addressed by combining CRS spectra of these targets with data from current or future facilities such as the Large Synoptic Survey Telescope, the Square Kilometre Array and the Euclid mission.
130 - L. Wolz , S.G. Murray , C. Blake 2018
HI intensity mapping data traces the large-scale structure matter distribution using the integrated emission of neutral hydrogen gas (HI). The cross-correlation of the intensity maps with optical galaxy surveys can mitigate foreground and systematic effects, but has been shown to significantly depend on galaxy evolution parameters of the HI and the optical sample. Previously, we have shown that the shot noise of the cross-correlation scales with the HI content of the optical samples, such that the shot noise estimation infers the average HI masses of these samples. In this article, we present an adaptive framework for the cross-correlation of HI intensity maps with galaxy samples using our implementation of the halo model formalism (Murray et al 2018, in prep) which utilises the halo occupation distribution of galaxies to predict their power spectra. We compare two HI population models, tracing the spatial halo and the galaxy distribution respectively, and present their auto- and cross-power spectra with an associated galaxy sample. We find that the choice of the HI model and the distribution of the HI within the galaxy sample have minor significance for the shape of the auto- and cross-correlations, but highly impact the measured shot noise amplitude of the estimators, a finding we confirm with simulations. We demonstrate parameter estimation of the HI halo occupation models and advocate this framework for the interpretation of future experimental data, with the prospect of determining the HI masses of optical galaxy samples via the cross-correlation shot noise.
66 - A. Amon , C. Blake , C. Heymans 2017
We present a new measurement of $E_{rm G}$, which combines measurements of weak gravitational lensing, real-space galaxy clustering and redshift space distortions. This statistic was proposed as a consistency test of General Relativity (GR) that is i nsensitive to linear, deterministic galaxy bias and the matter clustering amplitude. We combine deep imaging data from KiDS with overlapping spectroscopy from 2dFLenS, BOSS DR12 and GAMA and find $E_{rm G}(overline{z}=0.267)=0.43 pm 0.13$ (GAMA), $E_{rm G}(overline{z}=0.305)=0.27 pm 0.08$ (LOWZ+2dFLOZ) and $E_{rm G}(overline{z}=0.554)=0.26 pm 0.07$ (CMASS+2dFHIZ). We demonstrate that the existing tension in the value of the matter density parameter hinders the robustness of this statistic as solely a test of GR. We find that our $E_{rm G}$ measurements, as well as existing ones in the literature, favour a lower matter density cosmology than the Cosmic Microwave Background. For a flat $Lambda$CDM Universe and assuming GR, we find $Omega_{rm m}(z=0)=0.25pm0.03$. With this paper we publicly release the 2dFLenS dataset at: url{http://2dflens.swin.edu.au}.
419 - L. Wolz , C. Blake , J.S.B. Wyithe 2017
We propose an innovative method for measuring the neutral hydrogen (HI) content of an optically-selected spectroscopic sample of galaxies through cross-correlation with HI intensity mapping measurements. We show that the HI-galaxy cross-power spectru m contains an additive shot noise term which scales with the average HI brightness temperature of the optically-selected galaxies, allowing constraints to be placed on the average HI mass per galaxy. This approach can estimate the HI content of populations too faint to directly observe through their 21cm emission over a wide range of redshifts. This cross-correlation, as a function of optical luminosity or colour, can be used to derive HI-scaling relations. We demonstrate that this signal will be detectable by cross-correlating upcoming Australian SKA Pathfinder (ASKAP) observations with existing optically-selected samples. We also use semi-analytic simulations to verify that the HI mass can be successfully recovered by our technique in the range M_HI > 10^8 M_solar, in a manner independent of the underlying power spectrum shape. We conclude that this method is a powerful tool to study galaxy evolution, which only requires a single intensity mapping dataset to infer complementary HI gas information from existing optical and infra-red observations.
327 - L. Wolz , C. Tonini , C. Blake 2015
Intensity mapping of the neutral hydrogen (HI) is a new observational tool that can be used to efficiently map the large-scale structure of the Universe over wide redshift ranges. The power spectrum of the intensity maps contains cosmological informa tion on the matter distribution and probes galaxy evolution by tracing the HI content of galaxies at different redshifts and the scale-dependence of HI clustering. The cross-correlation of intensity maps with galaxy surveys is a robust measure of the power spectrum which diminishes systematics caused by instrumental effects and foreground removal. We examine the cross-correlation signature at redshift z=0.9 using a variant of the semi-analytical galaxy formation model SAGE (Croton et al. 2016) applied to the Millennium simulation in order to model the HI gas of galaxies as well as their optical magnitudes based on their star-formation history. We determine the clustering of the cross-correlation power for different types of galaxies determined by their colours, acting as a proxy for their star-formation activity. We find that the cross-correlation coefficient for red quiescent galaxies falls off more quickly on smaller scales k>0.2h/Mpc than for blue star-forming galaxies. Additionally, we create a mock catalogue of highly star-forming galaxies using a selection function to mimic the WiggleZ survey, and use this to predict existing and future cross-correlation measurements of the GBT and Parkes telescope. We find that the cross-power of highly star-forming galaxies shows a higher clustering on small scales than any other galaxy type and that this significantly alters the power spectrum shape on scales k>0.2h/Mpc. We show that the cross-correlation coefficient is not negligible when interpreting the cosmological cross-power spectrum. On the other hand, it contains information about the HI content of the optically selected galaxies.
110 - L. Wolz , C. Blake , F. B. Abdalla 2015
We present the first application of a new foreground removal pipeline to the current leading HI intensity mapping dataset, obtained by the Green Bank Telescope (GBT). We study the 15hr and 1hr field data of the GBT observations previously presented i n Masui et al (2013) and Switzer et al (2013), covering about 41 square degrees at 0.6<z<1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point source contamination using an independent component analysis technique (fastica), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that fastica is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps is dominated by instrumental noise on small scales which fastica, as a conservative subtraction technique of non-Gaussian signals, can not mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the Singular Value Decomposition (SVD) method, and confirm that foreground subtraction with fastica is robust against 21cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and fastica are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping datasets.
54 - L. Wolz , F.B. Abdalla , C. Blake 2013
We model a 21 cm intensity mapping survey in the redshift range 0.01<z<1.5 designed to simulate the skies as seen by future radio telescopes such as the Square Kilometre Array (SKA), including instrumental noise and Galactic foregrounds. In our pipel ine, we remove the introduced Galactic foregrounds with a fast independent component analysis (fastica) technique. We present the power spectrum of the large-scale matter distribution, C(l), before and after the application of this foreground removal method and calculate the resulting systematic errors. We attempt to reduce systematics in the foreground subtraction by optimally masking the maps to remove high foregrounds in the Galactic plane. Our simulations show a certain level of bias remains in the power spectrum at all scales l<400. At large-scales l<30 this bias is particularly significant. We measure the impact of these systematic effects in two different ways: firstly we fit cosmological parameters to the broadband shape of the power spectrum and secondly we extract the position of the Baryon Acoustic Oscillations (BAO). In the first analysis, we find that the systematics introduce an significant shift in the best fit cosmological parameters at the 2 to 3 sigma level which depends on the masking and noise levels. However, cosmic distances can be recovered in an unbiased way after foreground removal at all simulated redshifts by fitting the BAOs in the power spectrum. We conclude that further advances in foreground removal are needed in order to recover unbiased information from the broadband shape of the power spectrum, however, intensity mapping experiments will be a powerful tool for mapping cosmic distances across a wide redshift range.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا