ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic rays may be linked to the formation of volatiles necessary for prebiotic chemistry. We explore the effect of cosmic rays in a hydrogen-dominated atmosphere, as a proof-of-concept that ion-neutral chemistry may be important for modelling hydrog en-dominated atmospheres. In order to accomplish this, we utilize Monte Carlo cosmic ray transport models with particle energies of $10^6$ eV $< E < 10^{12}$ eV in order to investigate the cosmic ray enhancement of free electrons in substellar atmospheres. Ion-neutral chemistry is then applied to a Drift-Phoenix model of a free-floating giant gas planet. Our results suggest that the activation of ion-neutral chemistry in the upper atmosphere significantly enhances formation rates for various species, and we find that C$_2$H$_2$, C$_2$H$_4$, NH$_3$, C$_6$H$_6$ and possibly C$_{10}$H are enhanced in the upper atmospheres because of cosmic rays. Our results suggest a potential connection between cosmic ray chemistry and the hazes observed in the upper atmospheres of various extrasolar planets. Chemi-ionization reactions are briefly discussed, as they may enhance the degree of ionization in the cloud layer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا