ترغب بنشر مسار تعليمي؟ اضغط هنا

104 - H. Folonier , F. Roig , C. Beauge 2014
We study the capture and crossing probabilities into the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the ave raged planar restricted three-body problem based on the symplectic mapping of Hadjidemetriou (1993), adding the secular variations of the orbit of Jupiter and non-symplectic terms to simulate the migration. We found that, for fast migration rates, the captures occur at discrete windows of initial eccentricities whose specific locations depend on the initial resonant angles, indicating that the capture phenomenon is not probabilistic. For slow migration rates, these windows become narrower and start to accumulate at low eccentricities, generating a region of mutual overlap where the capture probability tends to 100%, in agreement with the theoretical predictions for the adiabatic regime. Our simulations allow to predict the capture probabilities in both the adiabatic and non-adiabatic cases, in good agreement with results of Gomes (1995) and Quillen (2006). We apply our model to the case of the Vesta asteroid family in the same context as Roig et al. (2008), and found results indicating that the high capture probability of Vesta family members into the 3:1 mean motion resonance is basically governed by the eccentricity of Jupiter and its secular variations.
The lower limit to the distribution of orbital periods P for the current population of close-in exoplanets shows a distinctive discontinuity located at approximately one Jovian mass. Most smaller planets have orbital periods longer than P~2.5 days, w hile higher masses are found down to P~1 day. We analyze whether this observed mass-period distribution could be explained in terms of the combined effects of stellar tides and the interactions of planets with an inner cavity in the gaseous disk. We performed a series of hydrodynamical simulations of the evolution of single-planet systems in a gaseous disk with an inner cavity mimicking the inner boundary of the disk. The subsequent tidal evolution is analyzed assuming that orbital eccentricities are small and stellar tides are dominant. We find that most of the close-in exoplanet population is consistent with an inner edge of the protoplanetary disk being located at approximately P>2 days for solar-type stars, in addition to orbital decay having been caused by stellar tides with a specific tidal parameter on the order of Q*=10^7. The data is broadly consistent with planets more massive than one Jupiter mass undergoing type II migration, crossing the gap, and finally halting at the interior 2/1 mean-motion resonance with the disk edge. Smaller planets do not open a gap in the disk and remain trapped in the cavity edge. CoRoT-7b appears detached from the remaining exoplanet population, apparently requiring additional evolutionary effects to explain its current mass and semimajor axis.
62 - C.A. Giuppone 2010
We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities, also we assume that both planets share the same orbital p lane. Initially we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analyzed in more detail using a semi-analytical model. Apart from the well known quasi-satellite (QS) orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at $(sigma,Deltaomega) = (pm 60deg, mp 120deg)$, where sigma is the difference in mean longitudes and Deltaomega is the difference in longitudes of pericenter. The position of these Anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities, and are found for eccentricities as high as ~ 0.7. Finally, we also applied a slow mass variation to one of the planets, and analyzed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا