ترغب بنشر مسار تعليمي؟ اضغط هنا

71 - C. Baumgarten 2014
Classical mechanics, relativity, electrodynamics and quantum mechanics are often depicted as separate realms of physics, each with its own formalism and notion. This remains unsatisfactory with respect to the unity of nature and to the necessary numb er of postulates. We uncover the intrinsic connection of these areas of physics and describe them using a common symplectic Hamiltonian formalism. Our approach is based on a proper distinction between variables and constants, i.e. on a basic but rigorous ontology of time. We link these concept with the obvious conditions for the possibility of measurements. The derived consequences put the measurement problem of quantum mechanics and the Copenhagen interpretation of the quantum mechanical wavefunction into perspective. According to our (onto-) logic we find that spacetime can not be fundamental. We argue that a geometric interpretation of symplectic dynamics emerges from the isomorphism between the corresponding Lie algebra and the representation of a Clifford algebra. Within this conceptional framework we derive the dimensionality of spacetime, the form of Lorentz transformations and of the Lorentz force and fundamental laws of physics as the Planck-Einstein relation, the Maxwell equations and finally the Dirac equation.
122 - C. Baumgarten 2013
We take a new look at the details of symplectic motion in solenoid and bending magnets and rederive known (but not always well-known) facts. We start with a comparison of the general Lagrangian and Hamiltonian formalism of the harmonic oscillator and analyze the relation between the canonical momenta and the velocities (i.e. the first derivatives of the canonical coordinates). We show that the seemingly non-symplectic transfer maps at entrance and exit of solenoid magnets can be re-interpreted as transformations between the canonical and the mechanical momentum, which differ by the vector potential. In a second step we rederive the transfer matrix for charged particle motion in bending magnets from the Lorentz force equation in cartesic coordinates. We rediscover the geometrical and physical meaning of the local curvilinear coordinate system. We show that analog to the case of solenoids - also the transfer matrix of bending magnets can be interpreted as a symplectic product of 3 non-symplectic matrices, where the entrance and exit matrices are transformations between local cartesic and curvilinear coordinate systems. We show that these matrices are required to compare the second moment matrices of distributions obtained by numerical tracking in cartesic coordinates with those that are derived by the transfer a matrix method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا