ترغب بنشر مسار تعليمي؟ اضغط هنا

52 - C. Aubin , K. Orginos 2010
We discuss a new approach to reducing excited state contributions from two- and three-point correlation functions in lattice simulations. For the purposes of this talk, we focus on the Delta(1232) resonance and discuss how this new method reduces exc ited state contamination from two-point functions and mention how this will be applied to three-point functions to extract hadronic form factors.
We calculate the magnetic dipole moment of the Delta(1232) and Omega^- baryons with 2+1-flavors of clover fermions on anisotropic lattices using a background magnetic field. This is the first dynamical calculation of these magnetic moments using a ba ckground field technique. The calculation for Omega^- is done at the physical strange quark mass, with the result in units of the physical nuclear magneton mu_Omega^-= -1.93(8)(12) (where the first error is statistical and the second is systematic) compared to the experimental number: -2.02(5). The Delta has been studied at three unphysical quark masses, corresponding to pion mass m_pi = 366, 438, and 548 MeV. The pion mass dependence is compared with the behavior obtained from chiral effective field theory.
We calculate the magnetic dipole moment of the Delta baryon using a background magnetic field on 2+1-flavors of clover fermions on anisotropic lattices. We focus on the finite volume effects that can be significant in background field studies, and th us we use two different spatial volumes in addition to several quark masses.
419 - C. Aubin , J. Laiho , S. Li 2008
We calculate results for K to pi and K to 0 matrix elements to next-to-leading order in 2+1 flavor partially quenched chiral perturbation theory. Results are presented for both the Delta I=1/2 and 3/2 channels, for chiral operators corresponding to c urrent-current, gluonic penguin, and electroweak penguin 4-quark operators. These formulas are useful for studying the chiral behavior of currently available 2+1 flavor lattice QCD results, from which the low energy constants of the chiral effective theory can be determined. The low energy constants of these matrix elements are necessary for an understanding of the Delta I=1/2 rule, and for calculations of epsilon/epsilon using current lattice QCD simulations.
42 - C. Aubin , Jack Laiho , 2008
We study discretization effects in a mixed-action lattice theory with domain-wall valence quarks and Asqtad-improved staggered sea quarks. At the level of the chiral effective Lagrangian, discretization effects in the mixed-action theory give rise to two new parameters as compared to the lowest order Lagrangian for staggered fermions -- the residual quark mass, m_res, and the mixed valence-sea meson mass-splitting, Delta_mix. We find that the size of m_res is approximately four times smaller than our lightest valence quark mass on our coarser lattice spacing, and comparable to that of simulations by RBC and UKQCD. We also find that the size of Delta_mix is comparable to the smallest of the staggered meson taste-splittings measured by MILC. Because lattice artifacts are different in the valence and sea sectors of the mixed-action theory, they give rise to unitarity-violating effects that disappear in the continuum limit. Such effects are expected to be mild for many quantities of interest, but are significant in the case of the isovector scalar (a_0) correlator. Specifically, once m_res, Delta_mix, and two other parameters that can be determined from the light pseudoscalar spectrum are known, the two-particle intermediate state bubble contribution to the scalar correlator is completely predicted within mixed-action chiral perturbation theory (MAChPT). We find that the behavior of the scalar meson correlator is quantitatively consistent with the MAChPT prediction; this supports the claim that MAChPT describes the dominant unitarity-violating effects in the mixed-action theory and can be used to remove lattice artifacts and recover physical quantities.
43 - C. Aubin , Jack Laiho , 2007
We study the behavior of the isovector scalar correlator, which is particularly sensitive to lattice artifacts, using domain-wall valence quarks on a staggered sea (generated by the MILC collaboration). We analyze this according to the prediction fro m chiral perturbation theory determined by Prelovsek, which indicates that the leading unitarity violations come from taste breaking effects. We show that our data behaves in the way predicted by Prelovsek, thus verifying that the largest contribution to the violations of unitarity which arise at finite lattice spacing can be described by the mixed-action chiral perturbation theory.
63 - C. Aubin , C. Bernard 2007
We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (schpt), working to leading order in $1/m_Q$, where $m_Q$ is the heavy quark mass. We take the lig ht meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick within schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors $Btopi$ and $Dto K$ when the light quarks are simulated with the staggered action.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا